Balancing BMS type 2, version 5.x

Battery Management System

Operating Manual

Table of content:

Table of content: 2
WARNING 2
Concept behind the real-time balancing BMS Type 2 3
Control Unit BMS-2 MASTER V5.x 5
Connector description (Master 192) 7
Connector description (Master 250) 9
Programming of the parameters 10
Parameters description 11
Installation and run program MGM ProTool 15
Update of program MGM ProTool 15
Update SW inside the controller (FW, firmware) 16
Parameters settings / Reading data from BMS-2 19
Monitoring the system in real time 20
History - reading data stored in the BMS-2 21
Data log - reading events stored in the BMS-2 21
Displayed values 21
External display 23
Examples of other information displayed on the screen: 24
Balancing / Measuring module BMS-2-xxx BAL V4.0 25
Module addressing (BAL V4.0) 27
Balancing / Measuring module BMS-2-xxx BAL V250 28
Module addressing (BAL V250) 30
Current sensor HALL 400 B 31
Current sensor HALL 600 B 31
Changing the sensitivity of current probe 32
Samples. 33
Available items 34
Parts and Accessories 37
Product Warranty 37
Service and Technical Support. 39
System connection, part A 40
System connection, part B 41

Note:

Content............... all items are available quickly by CTRL+ left mouse button.
blue underlined all like this marking texts in manual quickly jump, by CTRL+ left mouse button, to corresponding content (cross reference).

In the Manual in "pdf" format on these marking texts standard cursor changed to hand symbol κ, $\boldsymbol{\gamma}$). In this case only click to left mouse button, (without CTRL), caused jump to corresponding content (cross reference).

Concept behind the real-time balancing BMS Type 2

CHARGING:
Unlike "equilibrium chargers" that charge and balance each individual battery cell separately, this system uses a single charger for the entire voltage / current, each cell having its own intelligent balancing circuit.

If we consider a 100Ah traction battery with a cell capacity variance of $\pm 2.5 \%$ charging at 100 A for 1 hour, a balancing current of up to 5 A is needed, provided balancing is enabled throughout the duration of the charge. Leaving balancing for the end of the charge cycle requires either a higher balancing current or a longer charge time - both of which are disadvantageous. A 200Ah battery, for example, would need either a 10A balancing current when charging at 200A, or a 2 -hour charge time charging at 100A. In other words, it is possible to charge a battery of up to 800Ah overnight (within 8 hours) at a current of 100A, with a balancing current of only $\sim 5 \mathrm{~A}$.
Units for balancing current 10A and units for balancing 12V battery are also available.
The worst-case scenario for energy balancing, i.e. in which there is the most power (heat) to dissipate, is a system consisting of one large-capacity cell paired with a group of smaller-capacity cells. For example, 1 large-capacity LiPol cell and 32 smaller-capacity cells with a total voltage of 125 V would require dissipating $\sim 660 \mathrm{~W}(=5 \mathrm{~A} \times \sim 4 \mathrm{~V} \times 33$ cells). Although this is quite a large amount, a circuit balancing the cells individually at 5 A would only require each cell to dissipate $\sim 20 \mathrm{~W}$, which is then feasible.

This leads to the concept of individual real-time balancers balancing throughout the duration of the charge, thus enabling a BMS for any number (n) of cells connected in series by \boldsymbol{n} balancers to one control unit.
The BMS Type 2 is just that-individual stand-alone balancing/gauging units (balancing at currents by the used unit), are connected to the individual cells of a battery and controlled by the central Control Unit.
Control unit, except for balancer control, enables also measurement of voltage, currents, safe disconnecting, communication with charger, communication with controller(s) of motor(s), communication with operation personnel (user).

Best results can be achieved if the control unit of a BMS can actually communicate with not only the charger, but also the motor controller, allowing for smoothest operation possible even in marginal situations, e.g. - if there is insufficient time for balancing, if it is necessary to limit the charging current, if the battery is heavily discharged, if it is necessary to limit motor performance, etc. When such communication is not provided, nothing else remains in such extreme situations but for the BMS to disconnect the charger or motor, which is certainly less than ideal. The disconnecting switch should be employed only in the most critical of situations, i.e. the charger is acting abnormally, the motor is on fire, etc.

Besides controlling the balancers, the Control Unit of the BMS Type 2 handles such communication with the charger, motor controller, and other services, as well as transmitting read-outs of voltage, heat, current, and disconnection safety status for display.

DISCHARGING:

The individual balancing units are also used for measuring during battery discharges. Similarly as while charging, the Control Unit monitors the state of each individual cell (temperature, voltage, internal resistance, total current, status in relation to other cells, etc.). If user-defined limits are exceeded, the load is disconnected. The Unit can also provide advance warnings of approaching conditions, such as a near-fully discharge, or the like.

BASIC INFORMATION:

The BMS Type 2 is compatible with all current types of traction cells (Pb, A123, LiPol, LiFe, etc.), except NiXX cells, i.e. all rechargeable cells with an operating current between 1.8 V and 5.0 Volts, depend on the balancing / measuring unit. Specific ranges of voltages and balancing currents depends on the type of balancing / measuring unit.

Available are units:
BMS-2-5A BAL V4.0 (up to 192 cells, up to 5A) up to 192 modules (cells)
BMS-2-10A BAL V4.0 (up to 192 cells, up to 10A) up to 192 modules (cells)
BMS-2-10A BAL V250 (up to 250 cells, up to 10A - direct mounting to cell), up to 250 modules (cells)
The BMS Control Unit is able to communicate with a PC for parameter settings, transfer of actual or saved values, etc. via USB. A module galvanic separated from the USBCOM 5i BMS connection is required.

BMS control unit may indicate the operating status of the monitored variables and 4 digital open collector output for currents up to 1 A and 12 V (on-board voltage), i.e, control LEDs or 12 V bulbs and 3 analog outputs $0 \div 3.3 \mathrm{~V}$ or $0 \div 10 \mathrm{~V}$ and one analog or frequency output for control analog meters on the dashboard.
If this information is transmitted to the cooperating system using the CAN or RS-485 bus (i.e, also indicate the other display) remain digital and analog outputs available and can be used for other purposes.

BMS control unit stores the long-term measurement data for later analysis, it can transfer to a connected PC via USB. It can draw attention to the damaged or defective cells and help prevent accidents completely destroyed by the type of article and unmoved to the finish.

Basic modules and Technical data of the BMS-2 system.

Control Unit BMS-2 MASTER V5.x

(for balancers BMS-2-xxx BAL-V4.0 and V250)
Master unit firmware, as well as firmware of balancing modules, is possible update via internet, USBCOM_5i BMS module and a USB port on your PC by program „MGM ProTool". This provides a significant advantage of the possibility to have current software (i.e. ease of repairs and modifications, access to new features and capabilities BMS,).

Driving unit settings as well as data reading is realized by program „MGM ProTool", see bellow.
Driving unit provide communication with balancing/measuring modules (BMS-2-xxx BAL V4.0 and/or V250). Communicate with other systems via CAN bus or RS-485 bus. This unit also control power contactors for correct connection of the power or disconnect power for critical situation (emergency switch-off battery).
This unit monitored state of each cell during charging and discharging, as well as in special situation as for example charging fully charged battery during recuperation (run down from hill) - activate signal recuperation-off for motor controller. Etc.

For all type of balancing/measuring units are used the same driving unit - differences are only in used firmware. Necessary specify, in order, which FW you need (depend on your application and/or substandard demands). In case you need for your application, another functions or features, than is not available in standard FW, is possible modify standard FW by your requested functions.

${ }^{*}$) Note 1: : Output indication signals (connector A, pins $6 \div 9$) are in the default version analog (connection of analog displays). For outputs AD2, 3 and 4 it is possible to set by jumpers U3 the output voltage (either 0 up to 3.3 V or 0 up to 10 V) by jumper between connectors "A" and „C".
For output AD1 it is possible to switch between analog output (0 up to 3.3 V) or a frequency output (internal converter U / f with output signal 10 V). It is possible to change all of these outputs $1 \div 4$ (or just some of them) upon a request to digital (ON-OFF or PWM)

By default, pins for AD1 \div AD4 port select (U3 area), are assembled to enable choice of the output and customer may set the type of output by himself/herself. It is possible to set (by soldering) the type of output upon request already in the manufacture

BMS-2 MASTER 192 Control Unit (for balancing modules V4.0)
(ver. 3.3, removed from box, max. configuration)

Jumpers for indication outputs specification:

3.3V analog 10V analog output AD4 OOO output AD3 000 The default is to select the type of output AD1 - AD4 mounted pins (field U3) and the customer himself can determine the output type by jumper. On request, the output type can be "hard connected" (by soldering) according to customer requirements already in production.
output AD2 0000
output AD1 $O 000$

Current probe connection

Connection flat cable with correct orientation (here without connector) Colour parking to pin 1

Switches connection

(connector „B" + part of connector "A"):
In active state is switch connected to "ground", to GND. Currently corresponding LED is lights (connector B only). In inactive state is switch "open". Switches are used for driving power contactors (see to last page) or as driving signal for disconnect for example recuperation.
For better clearness are switches draw as mechanical contacts, in real design are used power MOSFETs.

An identical circuit is used for outputs OUT D1 to OUT D4
(1 to 4 pin of connector " A "), but the used components are for smaller current.

Connector description (Master 192)

Connector A (indication):

- Pin 1: Digital output open collector 4 (1A / 12V)
- free

Connector C (current probe):

- Pin 2: Digital output open collector 3 (1A / 12V)
- free
- Pin 1: current probe supply (+5V or +12 V)
- Pin 3: Digital output open collector 2 (1A / 12V)
- Error

Pin 2: Sense +

- Pin 4: Digital output open collector 1 (1A / 12V)
- Fuel reserve
- Pin 3: current range of probe
- Pin 4: GND

Pin 5: GND

- Pin 6: Analog. / digital. output 4 (range $0 /+3.3 \mathrm{~V} / 10 \mathrm{~V}$)
- Pin 7: Analog. / digital. output 3 (range $0 /+3.3 \mathrm{~V} / 10 \mathrm{~V}$
- Pin 8: Analog. / digital. output 2 (range $0 /+3.3 \mathrm{~V} / 10 \mathrm{~V}$)
- Pin 9: A / D / frequency output 1 (range 0 / +3.3V / 10V)

Note: by default, outputs 2 to 4, possibly also 1 are analog

- it is possible to modify these to digital upon customer request (must be stated when ordering)

Connector B (power disconnecting switches, O.C.):

- Pin 1: minus pole of battery 12 V (power GND) - separate cable !
- Pin 2: minus pole of battery 12V (power GND) - separate cable !
- Pin 3: PO 1, Main Current (to load / for motor controller)
- Pin 4: PO 2, Antispark Current (for motor controller or capacitive load)
- Pin 5: PO 3, Charging Current 1 (main or small power - finishing)
- Pin 6: PO 4, Charging Current 2 (not or high power)
- Pin 7: PO 5, Battery Warming
- Pin 8: PO 6, Battery Cooling
- Pin 9: PO 7, AUX 1 (recuperation OFF)
- Pin 10: PO 8, AUX 2 (reserve)

Connector H (I2C bus, connection of USBCOM_4i):

- Pin $1:+5 \mathrm{~V} /+12 \mathrm{~V}$ output
- Pin 2: SCL
- Pin 3: SDA
- Pin 4: GND

Connector G (port RS-232/485), option:

- Pin 1: feeding (internal or external)
- Pin 2: RxD (232) / B line (485)
- Pin 3: TXD (232) / A line (485)
- Pin 4: GND

Connector E (System supply):

- Pin 1: supply (+12V)
- Pin 2: minus pole of battery 12V (system GND)

Connector F (BMS switch-on):

- Pin 1: (system GND) minus pole of battery 12V - separately cable
- Pin 2: internal switch-on supply (+12V)

Connector M (auxiliary charger controlling):

- Pin 1: OPT +
- Pin 2: OPT -

Connector D (Ext. temperature sensors), option:

- Pin 1: sensor 1: KTY 81-210
- Pin 2: GND of sensor 1
- Pin 3: sensor 2: KTY 81-210
- Pin 4: GND of sensor 2

Connector L (CAN BUS), option:

- Pin 1: +5V oputput
- Pin 2: CAN L
- Pin 3: GND
- Pin 4: CAN H

Connector I, J, K (connection bus for modules):

$I=$ section 1 , cells 1-64,
$J=$ section 2 , cells 65-128,
K= section 3, cells 129-192

- Pin 1: feeding (+5V)
- Pin 2: feeding (+5V)
- Pin 3: line A
- Pin 4: feeding (+5V)
- Pin 5: line B
- Pin 6: GND
- Pin 7: GND
- Pin 8: GND
- Pin 9: switch-on modules
- Pin 10: GND

IMPORTANT:

1) First, must always be connected to lines $\mathbf{I}, \mathbf{J}, \mathbf{K}$, followed by \mathbf{E} connector (12 V power supply system) and then any other connector. In other words, before inserting the connectors into the sockets in the driving unit (except I, J, K), the system must be powered by 12 V !!!
It is not permitted to disconnect the power supply system (connector E) before being disconnected all other connectors (again, except for lines I, J, K).
Do not forget for example also for the "update firmware" (when it is necessary to disconnect the 12 V power supply, connector E).
All activation and deactivation already connected the system is done via connector \mathbf{F} (switching by system "key"), not by disconnecting the power supply 12 V . The only exception is the firmware update.
2) Antispark (output PO 2) is switched by switching system ("key") for 3 sec . (capacitor load charge by limited current). Limiting resistor must be external and suitably sized (current and power).
3) If have cooperating motor controller the input for safe disconnection (e.g. controllers $256063 \mathrm{HBC}, \mathrm{HBC} 50063$ MGM compro etc.) can be output PO 1 of \mathbf{B} connector connected directly into the appropriate input of the controller - see the controllers HBC-series manual: http://mgm-compro.com/industrial/index.php?cat=speed-controllers-for-industry-high-power-hbc .
4) The current (common) push both buttons when power turned on invokes the default settings !!!

BMS-2 MASTER 250 Control Unit (for balancing modules V250)
(ver. 3.3, removed from box, max. configuration)

Jumpers for indication outputs specification:

3.3V analog 10V analog output AD4 OOO output AD3 000 The default is to select the type of output AD1 - AD4 mounted pins (field U3) and the customer himself can determine the output type by jumper. On request, the output type can be "hard connected" (by soldering) according to customer requirements already in production.
output AD2 0000
output AD1 $O 000$

Current probe connection

Connection flat cable with correct orientation (here without connector) Colour parking to pin 1

Switches connection

(connector „B" + part of connector " A "):
In active state is switch connected to "ground", to GND. Currently In active state is switch connected to "ground", to GND. Currently
corresponding LED is lights (connector B only). In inactive state is
switch "open". Switches are used for driving power contactors (see
to last page) or as driving signal for disconnect for example In active state is switch connected to "ground", to GND. Currently
corresponding LED is lights (connector B only). In inactive state is
switch "open". Switches are used for driving power contactors (see
to last page) or as driving signal for disconnect for example In active state is switch connected to "ground", to GND. Currently
corresponding LED is lights (connector B only). In inactive state is
switch "open". Switches are used for driving power contactors (see
to last page) or as driving signal for disconnect for example recuperation.
For better clearness are switches draw as mechanical contacts, in real design are used power MOSFETs.

An identical circuit is used for outputs OUT D1 to OUT D4
(1 to 4 pin of connector "A"), but the used components are for smaller current.

A Per

Connector B

Output wiring for easy control the charger (connector „M"):
This is a classic optocoupler which provides electrical isolation of the output.
When activated, the output transistor is closed (switch-on).

Standard vision haven't following connectors:

- connector „D" and corresponding circuits of measuring external temperatures
- connector „G" and corresponding circuits of RS-232 / RS-485
- connector „L" and corresponding circuits of CAN

These demands, include possibility of galvanic separation, necessary specify in options in order.

Note:

- connector „"" is present always (for cells 1 - 125)
- connector „J" is present always for cells 126-250

Connector description (Master 250)

Connector A (indication):

- Pin 1: Digital output open collector 4 (1A / 12V)
- free

Connector C (current probe):

- Pin 2: Digital output open collector 3 (1A / 12V)
- free
- Pin 1: current probe supply (+5V or +12 V)
- Pin 3: Digital output open collector 2 (1A / 12V)
- Error

Pin 2: Sense +

- Pin 4: Digital output open collector 1 (1A / 12V)
- Fuel reserve
- Pin 3: current range of probe
- Pin 4: GND

Pin 5: GND

- Pin 6: Analog. / digital. output 4 (range $0 /+3.3 \mathrm{~V} / 10 \mathrm{~V}$)
- Pin 7: Analog. / digital. output 3 (range 0 / +3.3V / 10V
- Pin 8: Analog. / digital. output 2 (range $0 /+3.3 \mathrm{~V} / 10 \mathrm{~V}$)
- Pin 9: A / D / frequency output 1 (range 0 / +3.3V / 10V)

Note: by default, outputs 2 to 4 , possibly also 1 are analog

- it is possible to modify these to digital upon customer request (must be stated when ordering)

Connector B (power disconnecting switches, O.C.):

- Pin 1: minus pole of battery 12 V (power GND) - separate cable !
- Pin 2: minus pole of battery 12V (power GND) - separate cable !
- Pin 3: PO 1, Main Current (to load / for motor controller)
- Pin 4: PO 2, Antispark Current (for motor controller or capacitive load)
- Pin 5: PO 3, Charging Current 1 (main or small power - finishing)
- Pin 6: PO 4, Charging Current 2 (not or high power)
- Pin 7: PO 5, Battery Warming
- Pin 8: PO 6, Battery Cooling
- Pin 9: PO 7, AUX 1 (recuperation OFF)
- Pin 10: PO 8, AUX 2 (reserve)

Connector H (I2C bus, connection of USBCOM_4i):

- Pin $1:+5 \mathrm{~V} /+12 \mathrm{~V}$ output
- Pin 2: SCL
- Pin 3: SDA
- Pin 4: GND

Connector G (port RS-232/485), option:

- Pin 1: feeding (internal or external)
- Pin 2: RxD (232) / B line (485)
- Pin 3: TXD (232) / A line (485)
- Pin 4: GND

Connector E (System supply):

- Pin 1: supply (+12V)
- Pin 2: minus pole of battery 12V (system GND)

Connector F (BMS switch-on):

- Pin 1: (system GND) minus pole of battery 12V - separately cable
- Pin 2: internal switch-on supply (+12V)

Connector M (auxiliary charger controlling)

- Pin 1: OPT +
- Pin 2: OPT -

Connector D (Ext. temperature sensors), option:

- Pin 1: sensor 1: KTY 81-210
- Pin 2: GND of sensor 1
- Pin 3: sensor 2: KTY 81-210
- Pin 4: GND of sensor 2

Connector L (CAN BUS), option:

- Pin 1: +5V oputput
- Pin 2: CAN L
- Pin 3: GND
- Pin 4: CAN H

Connector I, J (connection bus for modules):

$I=$ section 1 , cells 1-125,
$J=$ section 2 , cells 126-250,

- Pin 1: feeding (+5V)
- Pin 2: feeding (+5V)
- Pin 3: line A
- Pin 4: feeding (+5V)
- Pin 5: line B
- Pin 6: GND
- Pin 7: GND
- Pin 8: GND

GND Pin 10	- ■	Pin 9: feeding (+5V)
GND Pin 8	\square	Pin 7: GND
GND Pin 6		Pin 5: A line
eding (+5V) Pin 4		Pin 3: B line
eeding (+5V) Pin 2		Pin 1: feeding (+5V)

- Pin 9: feeding (+5V) - difference from system with balancers BAL V4.0 (Master 192) !!!
- Pin 10: GND

IMPORTANT:

2) First, must always be connected to lines \mathbf{I}, \mathbf{J}, followed by \mathbf{E} connector (12V power supply system) and then any other connector. In other words, before inserting the connectors into the sockets in the driving unit (except I, J), the system must be powered by 12 V !!!
It is not permitted to disconnect the power supply system (connector E) before being disconnected all other connectors (again, except for lines I, J).
Do not forget for example also for the "update firmware" (when it is necessary to disconnect the 12 V power supply, connector E).
All activation and deactivation already connected the system is done via connector \mathbf{F} (switching by system "key"), not by disconnecting the power supply 12 V . The only exception is the firmware update.
3) Antispark (output PO 2) is switched by switching system ("key") for 3 sec . (capacitor load charge by limited current). Limiting resistor must be external and suitably sized (current and power).
4) If have cooperating motor controller the input for safe disconnection (e.g. controllers 256063 HBC, HBC 50063 MGM COMPRO etc.) can be output PO 1 of \mathbf{B} connector connected directly into the appropriate input of the controller - see the controllers HBC-series manual: http://mgm-compro.com/industrial/index.php?cat=speed-controllers-for-industry-high-power-hbc .
5) The current (common) push both buttons when power turned on invokes the default settings !!!

Programming of the parameters

Parameters setting by user:

	parameter	range		step	Default settings / note
P1	Switching-off voltage	1.5 V	15 V	1 mV	2,5V
P2	Low voltage	1.5 V	15 V	1 mV	3,3V
P3	Balancing (Nominal) voltage	1.5 V	15 V	1 mV	3,6V
P4	Charging voltage	1.5 V	15 V	1 mV	4,2V
P5	Automatic detection of balancers			Y-N	A
P6	Number of connected balancers	1	192	1	1
P7	Battery capacity *)	0	655 Ah	0.01 Ah	0 !!!
P8	Charging efficiency	50 \%	100 \%	1 \%	100\%
P9	Cooling switching	0	$100{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
P10	Hysteresis of cooling switching	0	$10^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$
P11	Heating switching	0	$100{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$
P12	Hysteresis of Heating switching	0	$100{ }^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$2^{\circ} \mathrm{C}$
P13	Charging current fuse	0	655 A	1 A	0
P14	Discharging current fuse	0	655 A	1 A	0
P15	Balancer constant U	0	65536	1	6300
P16	System constant I	0	65536	1	200
P17	Voltage Measuring device - ZERO	0	100 \%	0.1 \%	0\%
P18	Voltage Measuring device - RANGE	0	100 \%	0.1 \%	100\%
P19	Current Measuring device - ZERO	0	100 \%	0.1 \%	50\%
P20	Current Measuring device - RANGE	0	100 \%	0.1 \%	100\%
P21	Capacity Measuring device - ZERO	0	100 \%	0.1 \%	0\%
P22	Capacity Measuring device - RANGE	0	100 \%	0.1 \%	100\%
P23	Re-Charging switch-ON			Y-N	N
P24	Powerful charger 2 connected			Y-N	N
P25	--	--	--	--	
P26	Balancing mode			H	"delayed"
P27	Blocking of bal. module update			Y-N	N
P28	Output signals inverting			Y-N	N
P29	External temperature sensors			Y-N	N
P30	Battery overvoltage \rightarrow traction off			Y-N	N
P31	Toleration of balancers dropouts switch-off			Y-N	N
P32	--	--	--	--	
P33	Low battery indication	0	100\%	1\%	10\%
P34	Cell's internal resistance measuring	--	--	Y-N	Y
P35	Cell's voltage recording into log	--	--	Y-N	N
P36	Current probe multiplier	0,25	10	0,25	1
P37	CAN speed	--	--	H	$250 \mathrm{kbit} / \mathrm{s}$
$\begin{aligned} & \text { P38 } \\ & \text { P39 } \\ & \text { P40 } \end{aligned}$	CAN address displacement CAN mode Module search	0	65535	1	257 B Uninterrupted sequence
	--	--	--	--	

Legend: H - choice from discrete values
*) Note 1: if necessary higher battery capacity value (parameter P7) can increase the capacity in exchange for a smaller resolution (6550 Ah and 0.1 Ah resolution) - in this case, please contact us

Note 2: At least red value must be set according to the actual situation before you use the system.

Parameters description

f the following description uses the term "battery voltage" or "cell voltage", we mean ALWAYS internal voltages Ui, not the terminal voltage Usv - i.e. voltage independent of the size of the current and internal resistance of the battery. The system continuously monitors the terminal voltage and current and calculates the actual internal resistance of the battery (each cell). The system uses this method for both discharge and charge the battery.
In case a terminal voltage of the cell (battery), it is always highlighted.

The minimum operating voltage of the balancing / measuring units (abbreviated balancers) is $1.8 \mathrm{~V} / \mathrm{cell}$. In this case, the terminal voltage of the cells it means, not the internal voltage. If the terminal voltage of cells drops for any reason under this limit, the corresponding balancer stops to measure and communicate with driving unit until the terminal voltage of the cell increases above 1.8 V .

P1: Switching-off voltage

If the cell voltage drops below this threshold for more than 30 seconds, occurs an emergency disconnecting of the load (PO 1). Status is indicated by flashing indicator is used to output D1 (it is advisable to reduce power consumption - "reducing throttle"). To cancel the countdown occurs when the cell voltage will back (the during count down 30 second interval.) to the level set in parameter P2. But if has is disconnected, the system is on / off by key again. This is the most voltage discharged cell, i.e. cell with the smallest voltage across the battery.

P2: Low voltage

Is the voltage at which the system is allowed to start and / or cancellation of during countdown emergency disconnecting of the load (see P1).

P3: Balancing voltage

Specify the border, which begins balancing of the cells during charging. For different types of cells that line varies. Lipol cells is advantageous balance of the smallest voltage (3.2 V) for LiFePO4 cells does not make sense to balance the so low voltage because most of the charging cycle is nearly constant voltage (around 3.3V). In this type of the cells is recommended to balance the values of about $3,5 \div 3,6 \mathrm{~V}$.

P4: Charging voltage
It is permissible maximum cell voltage during charging - from achieving this voltage should change the charging characteristic from the "constant current' to "constant voltage" (standard CC-CV charging). By achieving this voltage should current, thanks to this characteristic, decline. After a progressive reduction current (by charger) under 5 to 10% of nominal charging current when the battery is 100% charged. See Figure A + Figure B on the next page, where you see the basic characteristics of charging Lipol and LiFePo4 cells. This type of charger is connected as main charger to the output PO 3.

If used charger does not automatically reduce current smoothly, these scenarios are possible for charging:
a) Charger can reduce (on the external signal) the current below 5 to 10% of the nominal charge current and simultaneously below the current level of balancing current, so after reaching voltage level P4 (SB point) reduces the current and the battery is recharge subsequently by this reduced current while balancing, Figure C. The charger is connected as main charger to output PO 3.
b) The charger cannot reduce the current. Charger is connected as a powerful charger to output PO 4. After reaching the voltage level P4 (SB point) is the output PO 4 disconnected. Charging provides low power charger with a low current output connected to the output PA 3 up to full charge and full balancing, Fig C.
c) If powerful charger can not reduce current and is not used second low power charger, the system after achieve voltage of P4 levels switch-off charger. After balancing the most charged cells to the lowest level charger turns on so the cycle repeats turning on and off until the balancing of all cells, see Figure D. Charger is connected as main charger to the output PO 3.

Fig. A Lipol cell charging by CC-CV charger

Fig. C Lipol cell charging by CC charger with reduce current to low value A2 possibility (main charger, output PO 3) OR
Lipol cell charging by CC charger without reduce current (high power charger, output PO 4) with connected second low current charger (low power charger, output PO 3)

Fig. B LiFePo4 cell charging by CC-CV charger

Fig. D Lipol cell charging by CC charger

Pozn.: When using only one charger, the main (if one is the intelligent, CC-CV or ordinary CC, etc.), it is necessary to connect to the output PO 3. If you use two chargers, the small current charger is controlled by output PO 3, high power by output PO 4. Two chargers makes sense only if the charger has not powerful characteristic of the CC-CV or has no possibility reduce the current (by external command) to the level of balancing currents of individual balancers.
Low power charger should have a charging current such that it balancers were able absorb it with reserve and at the same time should be less than 5 to 10% of the nominal charge current.

Fig. E Lipol cells discharging

P5: Automatic detection of balancers

- NO - BMS works only if the system found that the number of balancers is equal to the number specified in the P6
- YES - BMS works with any number of balancers (2-192). This setting is potentially dangerous, the system fails to identify the missing balancer - suitable only for testing

P6: Number of connected balancers

It is the sum of all balancers on all lines.
P7: Battery capacity
The nominal battery capacity in Ah.
P8: Charging efficiency
Specifies how efficiently for charging cells for the system can calculate (about 90\%) - the value can be gradually fine-tune.

P9: Cooling switching

Specify switching borders of cooling. If the temperature of any cells is higher than temperature set here, BMS switch-on power output PO 6.

P10: Hysteresis of cooling switching

If the temperature of all cells drops below a set here P9 hysteresis, BMS turns off power output PO 6.

P11: Heating switching

Specify switching borders of heating. If the temperature of any cells is lower than here set temperature, the BMS activates power output PO 5.

P12: Hysteresis of Heating switching
If the temperature of all cells increases over a set here P11 hysteresis, BMS turns off power output PO 5.

P13: Charging current fuse

If the current from the charger exceeds the limit set here, the BMS disconnects power outputs PO 3, PO 4.
A value of zero $(=0)$ means the fuse is TURNED OFF.

P14: Discharging current fuse

If the current from the battery exceeds the limit set here, the BMS disconnects power outputs PO 1.
A value of zero $(=0)$ means the fuse is TURNED OFF.
P15: Balancer constant U
The value is determined for a given system from the production. When assemble the system yourself from the MGMCOMPRO components, contact MGM COMPRO

P16: System constant I

The value is determined for a given system from the production according to the current probe. When assemble the system yourself and you need to use a probe with a different range or another probe, contact MGM COMPRO.

Calibration output for external measuring instrument showing the basic variables (outputs AD1 to AD 4):
P17: Voltage measuring device - ZERO
Calibration of the analog zero voltage indicators (output AD3 and AD4)
P18: Voltage measuring device - RANGE
The calibration range of the analog voltage indicators (output AD3 and AD4)
P19: Current measuring device - ZERO
Calibration of the analog zero current indicator (output AD2), zero in the middle of scales
P20: Current measuring device - RANGE
The calibration range of the analog current indicator (output AD2), \pm full range
P21: Capacity measuring device - ZERO
Calibration of the analog zero of the capacity indicator (output AD1), \% of charging
P22: Capacity measuring device - RANGE
The calibration range of the analog capacity indicator (output AD1), \% of charging

P23: Re-Charging switch-ON

- NO - charging is terminated by voltage P4 achievement on the all cells. To start a new (next) charging is necessary to disconnect and reconnect the control voltage to the triggering input for activation (\mathbf{F} connector)
- YES - Charger is periodically switched after the voltage drop on the cells below P4 at all times activation of BMS

P24: Powerful charger 2 connected (output PO 4)

Select YES if connected to a powerful high-current charger. In this case MUST be connected to the low power charger to output PO 3 !!! (if it is connected to only one charger must be connected to PO 3 !!!)

P25: hidden parameter

P26: Balancing mode

- CONTINUOUS - system begins balancing to achieve of voltage parameter defined P3
- DELAYED - system begins balancing to reach the voltage parameter P4 (SB point in Fig. C)
- LIMITED - system only limiting cells of voltage P4
- OFF - balancing is off (but the system monitors and disconnects as needed)

P27: Blocking of balancing module (balancers) update

- NO - BMS updates the balancers firmware where necessary
- YES - BMS is prohibited updated balancers - balancers with an outdated or incompatible firmware will behave as not present - only for testing recommend

P28: Output signals inverting (PO 1 up to PO 8)

- NO - Power outputs are switched on, when connected devices to be active
- YES - Power outputs are switched, when connected to be deactivated (disconnected)

P29: External temperature sensors

- SWITCH-OFF - connected sensors (D connector) is not taken into account
- SWITCH-ON - connected to an external temperature sensors (KTY 81-210) are assigned to monitor temperatures for cooling / heating (D connector). Both sensors must be connected physically correct behavior !!!

P30: Battery overvoltage \rightarrow traction off (controlling traction / recuperation)

- SWITCH-OFF - battery overvoltage turns off chargers (PO 3 / PO 4) and activates the output PO 7 "recuperation off ".
- SWITCH-ON - battery overvoltage turns off chargers (PO 3/PO 4) and activates the output PO 7 "recuperation off " and disconnects the load (motor) output PO 1.

P31: Toleration of balancers dropouts switch-off

- SWITCH-OFF - BMS continuously tolerates 5% balancers out of order - only the error signals output Error (D2) is activated.
- SWITCH-ON - BMS does not tolerate any failure balancer exceeding 5 attempts to communication.

P32: hidden parameter

P33: Low battery indication
Battery discharge level (remaining charge, remaining energy), which activates the light of "reserve fuel" indicator (Output D1). Similar as warning light in your car that you are approaching an empty fuel tank.

P34: Cell's internal resistance measuring

- deactivate
- active

P35: Cell's voltage recording into log

- switch-off
- switch-on

P36: Current probe multiplier

Parameter allows you to change the basic sensitivity of the current probe, see "Changing the sensitivity of the current probe", in proportion:
$0,25 \times$ up to $10 \times$
Values $0,25 / 0,5$ decreases sensitivity $4 \times / 2 \times$ (increase the current range $4 \times / 2 \times$), values above 1 increases, the contrary, sensitivity.

P37: CAN speed

- 1 Mbit/s
- $500 \mathrm{kbit} / \mathrm{s}$
- $250 \mathrm{kbit} / \mathrm{s}$
- $125 \mathrm{kbit} / \mathrm{s}$

P38: CAN address displacement

0 up to 65335
P39: CAN mode

- A
- B

P40: Module search

- Uninterrupted sequence
- Whole address space

When you choice „Uninterrupted sequence ",addresses of each balancer must be one after the other, without spaces.
Example: battery with 70 cells
Section 1: 0, 1, 2, 3, 4, . 62, 63 (total 64),
Section 2: 0, 1, 2, 3, 4, 5 (total 6),
When you choice "Whole address space ",you may any address of balancing modules, including spaces. The only condition is that one address must not be used in the same section more than 1x !
Example: battery with 70 cells
Section 1: 0, 1, 2, 8, 10, 61 (total 30),
Section 2: 5, 6, 15, 22, 23, ... 50 (total 25),
Section 3: 1, 20, 21, 22, 48 (total 15) - only for BAL V4.0 and Master unit 192.

Installation and run program MGM ProTool

Are very simply and intuitive. Details are described in manual "Installation and controlling of program ProToof", follow instructions in this manual please.

Update of program MGM ProTool

Update SW version of your program MGM ProTool is possible make by two ways.

Update SW inside the controller (FW, firmware)

When you want make update firmware in you controller to newest available version, you need USBCOM 5i BMS module and CC_10 cable (the same as for standard programming of parameters). Controller must be connected to internet.

Communication module USBCOM 5i BMS

Starting sequence for firmware updating:

0. Connect USBCOM 5i BMS module to PC and to BMS, connector "H" by CC_10 cable and Start program Controller 2 first. When connect USBCOM module first time, wait for installation finish. Connect BMS, but no turn-on yet.

4a. Turn the BMS-2 on by connect System feeding 12V (connector "E"). If is your BMS turn-on, it is necessary turn- off the BMS-2 now and turn-on once again.
Now is available window with the available firmware versions, $\mathbf{4 b}$.
4b. Choice version corresponds with your system.

5. Push button "Update firmware".
6. Confirm firmware updating.

7. Updating procedure start.

8b. when procedure corrupt (communication error etc.), is displayed this message Necessary start this update again!

Firmware update

8a. When procedure correctly finished, this message will appear. Push OK

9. Follow next instruction.

Push OK.
You have performed an operation that requires restart of the device:

1) Turn off the device power.

9 2) Close this dialog.
3) Turn the power on, the device will be re-initialized.
10. After restart device (= your BMS), newest version of its
firmware is displayed. Update procedure is complete.

Note:

You can start updating procedure for unlimited amount of tries, the BMS cannot be broken down by failed update, but you have to finish the update procedure without errors [8a] before using your system or you set the parameters, etc.
When procedure don't finished correctly [point 8b], BMS (device) after next turn-on don't work, not possible set parameters, etc. In this case is necessary this updating procedure repeat !
Note: Please, check also, if newest version of program „MGM ProTool" isn't available. Newest parameters or other changes, which correspond with new version of the firmware, can be added. Without a corresponding version of program "MGM ProTool" settings will not work correctly!

Parameters settings / Reading data from BMS-2

To set parameters or reading data from your BMS-2 need to connect to your PC, the module USBCOM 5i BMS, the control software
" MGM ProTool ", this is free to download on our web and on CD and connection cable CC_10.

1) If your BMS is already turned on and running, you can skip this point.

If BMS is off, turn on the BMS by connection 12V „System feeding" (connector „E") and "Switch-on system" (connector "F").
2) start program MGM ProTool
3) connect USBCOM 5i BMS to USB port of your PC and connect, by cable CC_10, USBCOM 5i module to BMS-2 driving unit (cable CC_10 is connected to plug \mathbf{H} of driving unit BMS)
4) Now is possible communicate with BMS, read data, change and write requested parameters etc.

If BMS goes into sleep mode (i.e. is not activated by "key", F connector) cannot communicate !
The control window in the PC:

Parameters that can be set are clearly listed in the table. Their detailed description follows the table.

Monitoring the system in real time

During operation of the BMS-2 can monitor all operating parameters of the system in real time. Besides graphical presentation in the form of a graph can be in a separate window to run a numerical display of monitored values. Colors and labeling of individual variables correspond to displayable curves in the graph.
At any time during operation of the BMS-2, you can connect to a PC (via USBCOM 5i) and run a monitoring system.

Current values of variables are displayed in a separate window.

Parameters that can be monitored:

a) - traction battery voltage
b) - traction battery current
c) - traction battery capacity
d) - minimum battery temperature
e) - maximum temperature of the battery
f) - the minimum cell voltage (cell voltage with the lowest value)
g) - the maximum cell voltage (cell voltage with the highest value)
h) - references
i) - the worst internal resistance of the cell (cell with the highest Ri)
j) - internal resistance of all the battery
k) - address the smallest voltage with cells
l) - address of the cells with the highest internal resistance

History - reading data stored in the BMS-2
Function is not supported in this application.

Data log - reading events stored in the BMS-2

Allows you can read all important events, including the voltage of each cell in during BMS activities. It also save unit's parameter settings. This data can be saved to a file. The format of the saved file type is Excel, „xls".

Displayed values

Immediately after switch-on unit displayed SW versions on the service display:

MM.BB where MM is FW version of driving unit, dot separate second number, this is FW version of balancing units Example:
53.57 FW of driving unit is 5.3 , FW of balancing units is 5.7

Control unit displayed, over and over:

Cx.xx cell voltage with the highest value
dx.xx cell voltage with the lowest value
X.xxx difference between highest and lowest cell voltage

Sample:
C3.14 means cell with highest voltage has $3,14 \mathrm{~V}$
d3.02 means cell with lowest voltage has 3,02V
0.127 means difference is $0,127 \mathrm{~V}$

Control unit next displayed messages:

FXXX measuring / balancing unit address, which signalize some problem, and follow
XXXX error number
$\mathrm{AXXX} \quad$ address of the balancing unit is not followed by an error because there is a problem with the connection.

Error messages:

BMS error indicates which balancing/measuring unit is faulty (its address, e.g. F041 = cell number 42), the list of error of balancing units is as follows:

```
0000: communication error
0001: damaged EEPROM with calibration data
0002 : damaged balancing FET - balancing current not flows and cell is not balancing
0003: damaged balancing FET - balancing current flows all the time and discharge cell !!!
0 0 0 4 \text { : damaged internal DC/DC converter}
0005: balancer overheating> 130 }\mp@subsup{}{}{\circ}\textrm{C
0006 : damaged temperature sensor
0007: damaged battery temperature sensor
```

In all cases is service mission necessary !!!

0255 : BMS without set parameters (from factory)
This is the default status of the new BMS - some parameters, the user must first set up according to their specific situation with a PC, by the program "Controller 2", see table "Programming parameters"

External display

External display is possible Conner to main unit. Display GWL 320×240 dots is available in two versions, RS232 and CAN. RS232 type is possible Conner to H connector via cable with I2C to RS232 converter. CAN vision is possible Conner directly to L connector
In view of the function or display options are both version equivalent.

Display GWL 320×240 (marking DISP1_i4_BMS):

Display GWL 320×240 need external feeding $5 \mathrm{~V} / 250 \mathrm{~mA}$. This is possible connect to "USB" connector or via communication connector. Using this connector and PC is possible change some display characteristics.

Conductors CAN_H, CAN L and GND join a communication CAN channel of the BMS-2
Supply from ext. source 5V.

To „L" connector (CAN)

Screens (data) are switched by tapping on the screen

Examples of other information displayed on the screen:

Balancing / Measuring module BMS-2-xxx BAL V4.0

These modules are used for measuring voltage and temperature and balancing during battery charging and also for measuring voltage and temperature during battery discharging. For each battery cells is necessary one module. Max. number of balancing/measuring modules in one system is 192.
You can connect $\mathrm{Pb}, \mathrm{A} 123$, LiPol, LiFe... cells, i.e. all types of the charging cells which operating voltage is in the range $1,8-5 \mathrm{~V}$.
Concrete range of voltage and current depend on type of balancing/measuring unit.
These modules in all versions (5A version, 10A version) have unique measuring of the temperature of power element (one or two pcs) PC_x". Measured is directly chip temperature and therefore this eliminate all errors or measuring mistakes caused by cooling air flow or caused by bad contact to cooler.
Also is significantly increase isolation voltage between communication line (driving unit) and each battery cells (and connected balancing units) - up to 3 kV
Dimensions of all modules are the same, differences are only in assembling components and number of power elements.
Modules have 3 modifications - standard type, type with termination impedance (marking ZR) and with additional connector (for easy connection between more small packs), marking ACC.
Mechanically last module on the bus (for each branch) must be type "ZR" with termination impedance. Not depend on the module address, important is only which module is on the end of each bus (flat cable).
When is battery divided to some mechanical parts (in one section) is advantageous that outer modules have additional connectors (ACC). Each packs are easy connected just thanks these additioanl connectors.

Dimension
$.74 \times 53 \mathrm{~mm}$
Weight ... $x x$ gram
Mounting to cooler .. $\quad(2+1+1) \times$ screw M3
(power element PC_x is mounted to cooler by silicone paste only)

Module current consumption in sleep mode	cca $100 \mu A$
Module current consumption in run mode	cca 30 mA

Isolation voltage between bus and cel (electronics) $>3 \mathrm{kV}$
BMS-2-5A BAL V4.0
Voltage of monitored / balanced cell .. 1.8 V up to 5.0 V
Balancing current / cell 0 up to 5 A

BMS-2-10A BAL V4.0
Voltage of monitored / balanced cell .. 1.8 V up to 5.0 V
Balancing current / cell 0 up to 10 A

Note:

- Connector K2 is assembled in modification „ACC" of unit V4.0
- Instead of using connector K3, the sensor with conductors may be directly soldered to the unit - this modification (without K3 connector) is preferred and this is standard.

Cables $1.5 \mathrm{~mm}^{2}$ with ring terminals (SCO 1.5-15 / 8)

Temperature sensor (TEMP-SW 20) with RADOX cables for measuring temperature of the cell

Balancing / Measuring module BMS-2-xxx BAL V4.0
Dimensions nad mounting holes: $\begin{aligned} & \text { Temperature } \\ & \text { sensor cable }\end{aligned}$

Connecting flat cable with orientation strip (color marking of wire $\mathbf{1}$)
es

$6{ }^{6}$		86\％ibig		白明明边			
	Adtuess 02						
昒		860989		180809		\％igi	
09		9道旬		90808		180800］	
部速				［6ididid			
86BE6		30］6］		6ibiob		\％ibibi	
686060］		－6ibidid		969］		68909	
				\％ $\cos ^{6}$		\％6ioid	
8i6ibio		8080909					
				－ib			
囱自				68060］		806069	
960	dess	¢ 8 ¢ibig				\％间间	
86109090				用迫时		¢08908	
旬	Addess 15		Adteses				

Essentially it does not matter which module，i．e．having which specific address，each cell has assigned to it．The easiest arrangement when，for example，identifying a faulty cell or a cell in poor condition，it is best to assign the lowest cell number 1 （the closest to the battery pole）the address＂00＂and assign the rest of the cells in order from there，i．e．＂01＂，＂02＂，and so on．
The last module on the connecting bus of each branch must be one with terminal resistors（BMS－2 BAL Vx．x ZR）．
The address of the module is irrelevant；the key is to have the proper module connected to the bus in the last position（mechanically， on the end of the flat cable）．
Provided the battery is mechanically separated into several elements，it is best to have modules on the end cells with auxiliary connectors（BMS－2 BAL Vx．x ACC）and connect the individual physical units via independent flat conductors with terminal connectors directly to the auxiliary connectors of the module．

Important：Within any one section may be used multiple times no address ！！！

Balancing / Measuring module BMS-2-xxx BAL V250

These modules are used for measuring voltage and temperature of the cells and balancing during battery charging and also for measuring voltage and temperature during battery discharging. For each battery cells is necessary one module. Max. number of balancing/measuring modules in one system is 250 (2 lines with 125 modules).
You can connect Pb, A123, LiPol, LiFe... cells, i.e. all types of the charging cells which operating voltage is in the range $1,8-5 \mathrm{~V}$ or $9-18 \mathrm{~V}$ for " 12 V " type. Concrete range of voltage and current depend on type of balancing/measuring unit. However primary using is for LiFePo4 cells (mechanically).

Isolation voltage between communication line (driving unit) and each battery cells (and connected balancing units) is up to 3 kV .
Mechanically last module on the bus (for each branch) must be with termination impedance (tin drop on correspond area, see next page). Not depend on the module address, important is only which module is on the end of each bus (flat cable).

BMS-2 xxx BAL V250:

Dimension with active cooling	$142 \times 52 \times 45 \mathrm{~mm}$
Weight	xx gram
Direct Mounting to LiFePo4 cells	$100 \div 160 \mathrm{Ah}$
Module current consumption in sleep mode	cca $100 \mu \mathrm{~A}$
Module current consumption in run mode	cca 30 mA
Isolation voltage between bus and cell (electronics)	3 kV
Voltage of monitored / balanced cell	1.8 V up to 5.0 V
Balancing current / cell	0 up to 10 A

Balancing Modules Mounting to the cells example:

Balancing / Measuring module BMS-2-xxx BAL V250

Module addressing (BAL V250)
(Classic binary code)

Essentially it does not matter which module, i.e. having which specific address, each cell has assigned to it. The easiest arrangement when, for example, identifying a faulty cell or a cell in poor condition, it is best to assign the lowest cell number 1 (the closest to the battery pole) the address "00" and assign the rest of the cells in order from there, i.e. "01", "02", and so on.
The last module on the connecting bus of each branch must be one with terminal resistors - i.e. must be make tin drop on the correspond area (see picture on the previous page).
The address of the module is irrelevant; the key is to have the proper module connected to the bus in the last position (mechanically, on the end of the flat cable).

Important: Within any one section may be used multiple times no address !!!

Box dimension
Hole for current cable
Sensing current
Insulating voltage
supply
Connection to current circuit
$55 \times 43 \times 23 \mathrm{~mm}$
$\varnothing 22 \mathrm{~mm}$
$\pm 400 \mathrm{~A}$
2500 VAC
from control unit BMS-MAIN-xxx
Orientation Discharge current must flow through the probe as arrow direction

Current sensor HALL 600 B

Box dimension

$$
55 \times 43 \times 23 \mathrm{~mm}
$$

Hole for current cable
Sensing current
Insulating voltage
supply
from control unit BMS-MAIN-xxx
Connection to current circuit current cable through sensor hole
Orientation Discharge current must flow through the probe as arrow direction

Current probe details:

HALL 400 B / SC

HALL 400 B / JST

Note: colors are relate to wires of the cable HSC-2

Changing the sensitivity of current probe

Standard delivery probe system has a basic sensitivity $\pm 400 \mathrm{~A}$ or $\pm 600 \mathrm{~A}$.
If you need to change the current sensitivity of the probe (or if you prefer, so probe "current range"), it can be easily implemented as follows:

a) increase in sensitivity (decrease the current range)

Sensitivity of the probe to increase the number of times the probe (sensor hole) stretched wire, through which flows the measured current.
I.e., in other words, how many turns the sensor wires slipped so many times you increase the sensitivity of the probe.

In the example in Figure, $4 \times$ sensor hole stretched wire, sensitivity will be increased 4 times, i.e., the resulting current range of the probe decreases from $\pm 400 \mathrm{~A}$ to $\pm 100 \mathrm{~A}$.

Atention ! In some applications, can be problem the increased inductance by this method (winding it around turns around the coil you create higher inductance of this wire).
b) reducing the sensitivity (increase the current range)

Sensitivity of the probe you can decrease the rate at which they divide the current flowing through the probe and the current flowing out of the probe.
The two parts of the split lines must be created equal length wires with the same cross section, of the same material and of course the joint must be precise - then is provided uniform current distribution.
Can be used the distribution $1 / 2: 1 / 2$ or $1 / 4: 3 / 4$
In the example shown, the current is divided into two equal parts, thus resulting probe current range is increased two times, from $\pm 400 \mathrm{~A}$ to $\pm 800 \mathrm{~A}$.

At the same time, you must set the parameter P36 corresponding to the changed range ("multiplier"), this modified probe!
This is for 400 A probe and 4 turn in case a) $100 \mathrm{~A}(\mathrm{P} 36=4)$, in cace b) $800 \mathrm{~A}(P 4=0,5)$.
This mean with ± 600 A probe and dividing of cables by case b) distribution $1 / 4$ of the current flow through probe, $3 / 4$ outside probe, i.e. one cable go through probe, 3 the same cables go outside probe, ($\mathrm{P} 36=0,25$) You can increase the current range of the $\pm 2400 \mathrm{~A}$.
On the other hand, it is possible with $\pm 400 \mathrm{~A}$ probe and 10 turns ($\mathrm{P} 36=10$) increase sensitivity $10 \times$, i.e.. decrease the current range of the system to $\pm 40 \mathrm{~A}$

Samples.

Custom radiator (aluminum square tube reinforced on top side)

Very elegant, efficient and simple method for balancers cooling by liquid, especially in fully enclosed boxes, is shown here. This is especially advantageous in devices and systems, where the liquid cooling as such no longer used for cooling the electric motor and controller. The intensity balancing is practically free limitation due to insufficient cooling, even in the worst case.
There are no problems with good cooling air distribution and use massive heatsinks with whom you can meet in air-cooled systems. The picture is part of the sealed battery cover removed (for reasons of state inspection system) after some traveled ca 50.000 km . Without any problems. At the edge of the box are remnants of black sealant under the cover.

Available items.

Product	Product Code
BMS-2 MASTER-V3.3 Main Control Unit for 64 cells (with BAL V4.0)	BMS-2 MAST-64
BMS-2 MASTER-V3.3 Main Control Unit for 128 cells (with BAL V4.0)	BMS-2 MAST-128
BMS-2 MASTER-V3.3 Main Control Unit for 192 cells (with BAL V4.0)	BMS-2 MAST-192
BMS-2 MASTER-V3.3 Main Control Unit for 250 cells (with BAL V250)	BMS-2 MAST-250
Possibility to add 2 external temperature sensors	EXTS-2
Galvanic separated CAN	GI-CAN
Galvanic separated RS-232 or:	GI-232
Galvanic separated RS-485	GI-485
Increase humidity nad wet resistivity	WRM
Connector Phoenix Contact 2 pins, for cable	PCC-2
Connector Phoenix Contact 4 pins, for cable	PCC-4
Connector Phoenix Contact 9 pins, for cable	PCC-9
Connector Phoenix Contact 10 pins, for cable	PCC-10
Current sensor +/-400A with 2 m cable	HALL 400 B / SC / JST
Current sensor $+/-600 \mathrm{~A}$ with 2 m cable	HALL 600 B / SC / JST
Connection cable for HALL 400 B / SC, 2m	HSC-2
Module for USB connection, galvanic isolated	USBCOM 5i BMS
Connection cable (between USBCOM 4i BMS and Control unit)	CC_10
USB 2 cable	USB cable
Driving SW for PC	xxxx
update SW	
BMS-2-5A BAL-V4.0 external measuring / balancing unit ($1.8 \mathrm{~V}-5.0 \mathrm{~V}$)	BMS-2L BAL
BMS-2-5A BAL-V4.0 external measuring / balancing unit with terminators	BMS-2L BAL-ZR
BMS-2-5A BAL-V4.0 external measuring / balancing unit with aux. connector	BMS-2L BAL-ACC
BMS-2-10A BAL-V4.0 external measuring / balancing unit ($1.8 \mathrm{~V}-5.0 \mathrm{~V}$)	BMS-2-10A BAL
BMS-2-10A BAL-V4.0 external measuring / balancing unit with terminators	BMS-2-10A BAL-ZR
BMS-2-10A BAL-V4.0 external measuring / balancing unit with aux. connector	BMS-2-10A BAL-ACC
BMS-2-10A BAL-V250 external measuring / balancing unit ($1.8 \mathrm{~V}-5.0 \mathrm{~V}$)	BMS-2-10A BAL V250
BMS-2-10A BAL-V250 external measuring / balancing unit with terminator	BMS-2-10A BAL-V250-ZR
Temperature Sensor KTY 81-210	TEMP-S
Temp. Sensor KTY 81-210 with cable RADOX (up to 30 cm)	TEMP - SW x x
Extra flexible cables (pair) $1.0 \mathrm{~mm}^{2}$ with silicon insulation (up to 30 cm)	SC 1.0 - xx
Extra flexible cables (pair) $1.0 \mathrm{~mm}^{2}$ with silicon insulation (up to 30 cm) (with cable lugs with hole $6,8,12$ or16 mm)	SCO 1.0-xx / 6 / 8 / 12 / 16
Only for BMS-2-10A BAL-V4.0:	
Extra flexible cables (pair) $1.5 \mathrm{~mm}^{2}$ with silicon insulation (up to 30 cm)	SC 1.5-xx
Extra flexible cables (pair) $1.5 \mathrm{~mm}^{2}$ with silicon insulation (up to 30 cm) (with cable lugs with hole $6,8,12$ or16 mm)	SCO 1.5-xx / 6 / 8 / 12 / 16
(Parameter xx specify requested cables length in cm - when no specify, delivery is 15 cm length)	
Flat connecting cable (module connecting)	FC-10 (delivery in footage)
Connector 10 pin for flat cable (module connecting) CON-10	CON-10
Auxiliary 10 pin connector for BMS-2 BAL-V24 module (sets connecting)	ACC-10

Note: Modules BMS-2(L) BAL xxx can be delivered with mounting temperature sensor and with cables and cable lugs - please write this requirement in the order's comment

Cable CC-10 for USBCOM 5i module connection:

To the „H" connector of Control unit

Product Warranty

MGM COMPRO guarantees, this product to be free from factory defects in material and workmanship. Warranty period is of 24 months from date of purchase and purchase within the EU. Warranty for purchases made outside the EU is inline with the respective legal regulations. Warranty liability shall be limited to repairing or replacing the unit to our original specifications.

The warranty may be claimed under the following conditions:

The product has been used in the coherence with the instructions for use and only for purposes stated in the instructions and provided that none of the conditions for which the warranty cannot be claimed (see below) occurred.

It is necessary to provide together with the product for repair:

- a copy of sales receipt (if a warranty repair is claimed)
- detailed description of the problem - how it occurred and what is the problem
- description of the problem, as manifested and under what conditions it happened (number of cells, type cells, capacity, etc.)
- your phone number and/or email address in order to allow further consultations regarding the problem

The warranty does not cover and therefore cannot be claimed for damages/destroys cause by:

- forced mechanical damage, crash, etc.
- chemical substances
- unqualified manipulation, incorrect installation
- any interference with the equipment (soldering, change of wires, change components, exposed circuit board etc.)
- reversal of poles
- overloading with a higher number of cells than specified
- feeding from unspecified source (e.g. mains source instead of the specified cells)
- shortcut on the output
- overload
- water or any other substances
- salt water
- operations with not recommended (not suitable) connectors
- not following the instruction in the manual or operating in conflict with recommendations or manual

The warranty also does not apply when:

- the controller or its parts are warn by regular use
- acts of God (e.g. strike by lightening)

We do reserve the right to change our product warranty at any time without prior notice.

Service and Technical Support.

Send product for service to address: MGM COMPRO, Sv. Čecha 593, 76001 Zlín, Czech republic, EU
Call your questions and requests to: $\mathbf{+ 4 2 0} 577001350$ or write on: $\underline{\text { mgm@mgm-compro.cz } \text {. }}$
Information about products, technical notes, news, recommendation: www.mgm-compro.cz
Update firmware and SW on: www.mgm-compro.cz

Recycling

This symbol on the product and / or accompanying documents mean that used electrical and electronic products should not be mixed with general household waste.
For proper treatment, recovery and recycling, please take these products to designated collection points, where they will be accepted on a free of charge basis.

Electromagnetic Conformity declaration

For these products of the BMS family we confirm that the electromagnetic compatibility directives are met.

- traction battery (GND)
(to motor controller and charger)

One box for one section

[^0]
System connection, part B

[^0]: + traction battery (GND)
 (to motor controller and charger)

