greenView Bedienungsanleitung

Für Firmware ab Revision 1.05.00 Revision dieser Bedienungsanleitung 1.05.00

Inhaltsverzeichnis

<u>1.</u>	Zu dieser Bedienungsanleitung
<u>2.</u>	Bestimmungsgemäße Verwendung
<u>3.</u>	Symbole
<u>4.</u>	Sicherheitshinweise
<u>5.</u>	Eigenschaften
<u>6.</u>	Verfügbare Versionen
7.	Montage14
<u>8.</u>	Anschluss und Inbetriebnahme
<u>8.1</u>	Anschluss an den RS485 Bus
<u>8.1.1</u>	Master Schnittstelle:20
<u>8.1.2</u>	Slave Schnittstelle:
<u>8.2</u>	Anschluss von Stromsensoren
<u>8.3</u>	Inbetriebnahme
<u>9.</u>	Bedienung
<u>9.1</u>	Übersichtsanzeigen
<u>9.1.1</u>	Ansicht - Home
<u>9.1.2</u>	Ansicht - gView
<u>9.1.3</u>	Ansicht - Graph
<u>9.1.4</u>	Ansicht - ISensor
<u>9.1.5</u>	Ansicht FSensor
<u>9.1.6</u>	Ansicht - GreenController
<u>9.1.7</u>	Ansicht - LiPro
<u>9.1.8</u>	Ansicht - GreenSwitch
9.2	Symbole/Schaltflächen42
<u>9.2.1</u>	Symbole-Modbus
<u>9.2.2</u>	Schaltfläche-SD-Karte42
<u>9.2.3</u>	Schaltfläche-Log42
<u>9.2.4</u>	Schaltfläche-Einstellungen
<u>9.3</u>	Einstellungen
<u>9.3.1</u>	Einstellungen – Display44

<u>9.3.2</u>	Einstellungen – Eingänge45
<u>9.3.3</u>	Einstellungen – Ausgänge48
<u>9.3.4</u>	Einstellungen – Kalibrierung
<u>9.3.5</u>	Einstellungen – Batterie51
<u>9.3.6</u>	Einstellungen – Zelle
<u>9.3.7</u>	Einstellungen – Adressen
<u>9.3.8</u>	Einstellungen – Netzwerk
<u>9.4</u>	Firmware Update
<u>10.</u>	greenViewDesktop
<u>10.1</u>	Information60
10.2	Setup
10.3	Verbinden
<u>11.</u>	Tipps und FAQ62
<u>11.1</u>	greenView Standalone Modus62
11.2	Modbus TCP/IP Server62
<u>11.3</u>	Modbus Slave Schnittstelle
<u>11.4</u>	Was ist ein intelligenter bzw. dynamischer Zellausgleich?63
11.5	Wie stelle ich die IP-Adresse ein
<u>12.</u>	Inspektion und Wartung
<u>13.</u>	Gewährleistung
<u>14.</u>	Entsorgung
<u>15.</u>	Schlussbemerkung
<u>16.</u>	Anhang A – Modbus Kommunikation
<u>17.</u>	Anhang B – Änderungsliste

Tabellenverzeichnis

Tabelle 1: Technische Daten	12
Tabelle 2: Anschlussbelegung	
Tabelle 3: RS485 Jumper	19
Tabelle 4: Anschlussbelegung RS485 – USB	21
Tabelle 5: Ansicht Home	
Tabelle 6: Ansicht gView	
Tabelle 7: Ansicht greenControler	
Tabelle 8: Ansicht Lipro	
Tabelle 9: Ansicht greenSwitch	41
Tabelle 10: Eingangsmodien	47
Tabelle 11: Ausgangsmodien	49
Tabelle 12: Zellparameter	56
Tabelle 13: Modbus – Konfiguration	66
Tabelle 14: Modbus – Schnittstellenparameter	

Abbildungsverzeichnis

Abbildung 1: Wandaufbau Version	13
Abbildung 2: Wandeinbau Version	13
Abbildung 3: Übersicht Verbindungsmöglichkeiten	15
Abbildung 4: Anschlussbelegung	16
Abbildung 5: RS485 Bus	20
Abbildung 6: Anschlussbelegung RS485 – USB	21
Abbildung 7: Stromsensor 100A	22
Abbildung 8: Gerätesuche	24
Abbildung 9: Home	27
Abbildung 10: gView	30
Abbildung 11: Graph	31
Abbildung 12: ISensor	32
Abbildung 13: Level Sensor	33
Abbildung 14: greenController	34
Abbildung 15: LiPro	
Abbildung 16: LiPro- erweiterte Parameter	
Abbildung 17: greenSwitch	40
Abbildung 18: Display	44
Abbildung 19: Eingänge	45
Abbildung 20: Ausgänge	48
Abbildung 21: Kalibrierung	50
Abbildung 22: Batterie	51
Abbildung 23: Zelle	54
Abbildung 24: Adressen	57
Abbildung 25: Netzwerk	58
Abbildung 26: Infofenster	60
Abbildung 27: greenViewDesktop Verbindungsmenü	61
Abbildung 28: greenViewDesktop Ansicht Home	61

1.Zu dieser Bedienungsanleitung

Auf den folgenden Seiten lesen Sie, wie Sie das Gerät für Ihre Verwendung sachgerecht in Betrieb nehmen und bedienen können. Wir legen Wert darauf, dass Sie das Gerät sicher, sachgerecht und wirtschaftlich betreiben. Dazu ist es notwendig, dass Sie diese Bedienungsanleitung gründlich lesen bevor Sie das Gerät benutzen.

Sie enthält wichtige Hinweise, die Ihnen dabei helfen, Gefahren zu vermeiden, sowie die Zuverlässigkeit und Lebensdauer des Gerätes und des Zubehörs zu erhöhen.

Lesen Sie den Abschnitt "Sicherheitsmaßnahmen" zu Ihrer eigenen Sicherheit. Befolgen Sie alle Hinweise genau, damit Sie sich und Dritte nicht gefährden und Schäden am Gerät vermeiden.

Wenn Sie Fragen zum greenView haben, die in dieser Bedienungsanleitung nicht beantwortet werden oder etwas nicht verständlich beschrieben wird, wenden Sie sich bitte **vor** Inbetriebnahme des Gerätes an:

ECS Electronic Construction Service

Am Wenigerflur 14 54498 Piesport Tel. 06507 9989955 Fax. 06507 9989956 www.ecs-online.org E-Mail: mail@ecs-online.org

Weiterhin können Sie Ihre Fragen auch im Forum unter http://www.ecs-online.dyndns.org/mybb/portal.php stellen. Vielleicht finden Sie dort auch schon die Antwort auf Ihre Frage(n).

2. Bestimmungsgemäße Verwendung

Der *greenView* dient zur Visualisierung einer autarken Stromversorgung (Inselsystem). Er kann angeschlossene Geräte wie z.B. greenController, greenSwitch oder LiPros über den RS485 Bus visualisieren und verfügt über eigene Eingänge für z.B. Stromsensoren. GreenView kann den Batterieladezustand berechnen und übersichtlich anzeigen. Daten können auf eine SD Karte geloggt werden. Über eine Ethernet Schnittstelle kann die Firmware aktualisiert werden und Daten aus der Ferne betrachtet werden. Zusätzlich kann greenView als Batterie Managment System (BMS) Master dienen und die "Balancer" Spannung (Ausgleichsspannung) der LiPros dynamisch anpassen.

Der *greenView* darf **nicht** ohne ausdrückliche Genehmigung des Herstellers in sicherheitskritischen Bereichen wie z.B. Krankenhäusern eingesetzt werden.

Die greenView ist ausschließlich zum Betrieb in Innenräumen konstruiert.

Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß.

3.Symbole

An mehreren Stellen der Bedienungsanleitung finden Sie die folgenden Symbole, die wichtige Sicherheitshinweise markieren:

ACHTUNG!

Dieses Symbol kennzeichnet Gefahren, bei denen Personen- oder Sachschäden auftreten können.

HINWEIS

Dieses Symbol weist auf Informationen zur Installation und Gerätefunktion hin.

Lesen Sie die folgenden Sicherheitshinweise gründlich und befolgen Sie diese genau. Sie dienen Ihrer eigenen Sicherheit, der Sicherheit von anderen Personen, sowie zur Vermeidung von Schäden an dem Gerät und an Zubehörteilen.

4. Sicherheitshinweise

Für Arbeiten an den Batterien verwenden Sie bitte isoliertes Werkzeug. Beim Anschluss der Leitungen an *greenView* müssen sämtliche Leitungen spannungsfrei sein.

Achtung:

Bei einem versehentlichen Kurzschluss an den Batterieleitungen können sehr hohe Ströme entstehen, die unter anderem zur Explosion der Batterien führen können, deshalb sind die oben genannten Anweisungen unbedingt einzuhalten. Batterien müssen über eine externe Überstromsicherung direkt an der Batterie abgesichert werden.

Das Gerät darf nur von einer elektrotechnischen Fachkraft in Betrieb genommen werden. Die Nichtbeachtung der aufgeführten Anweisungen kann zu einer Gefährdung führen. Der bestimmungsgemäße Gebrauch des Gerätes muss unbedingt beachtet werden. Für Schäden, die aus nicht bestimmungsgemäßen Gebrauch entstehen, übernimmt der Hersteller keine Haftung.

Die Bedienungsanleitung muss ständig am Einsatzort der Geräte verfügbar sein. Sie ist von der Person, die mit der Bedienung, Wartung und Instandhaltung des Gerätes beauftragt wird, gründlich zu lesen und anzuwenden.

Sorgen Sie dafür, dass keine Flüssigkeit in das Geräteinnere gelangen kann. Falls es dennoch dazu kommen sollte, unterbrechen Sie sofort die Stromversorgung zum Gerät. Stellen Sie sicher, dass alle elektrischen Anschlusskabel unversehrt sind und nicht geknickt oder gequetscht werden können. Wenn Sie Beschädigungen feststellen, schalten Sie das Gerät sofort aus, unterbrechen Sie die Stromversorgung und sichern Sie das Gerät gegen erneutes Einschalten.

Alle Störungen am Gerät, die die Sicherheit beeinträchtigen, müssen umgehend beseitigt werden. Alle an den Geräten angebrachten Warn- und Sicherheitshinweise sind zu beachten und vollzählig in lesbarem Zustand zu halten.

Der Zustand der Akkus sollte von Zeit zu Zeit überprüft werden, bitte beachten Sie auch das Kapitel Wartung.

Hinweis:

Unsere Geräte werden ständig verbessert und weiterentwickelt, deshalb behalten wir uns das Recht vor, jederzeit ohne vorherige Mitteilung Änderungen der Produktspezifikation vorzunehmen.

Ohne Genehmigung des Herstellers dürfen keinerlei Änderungen, weder mechanisch noch elektrisch, vorgenommen werden. Für Umbauten und Zubehör dürfen nur die vom Hersteller vorgeschriebenen Teile verwendet werden. Bei Zuwiderhandlungen erlöschen die Konformität und die Gewährleistung des Herstellers. Das Risiko trägt dann allein der Benutzer.

5. Eigenschaften

Mechanische Daten	
Abmessungen (H x B X T) Wandeinbau Version	ca. 150 mm x 167 mm x 62 mm max. Wandstärke: 30 mm
Abmessungen (H x B X T) Wandaufbau Version	ca. 132 mm x 167 mm x 38 mm
Gewicht Wandeinbau Version	0,4 kg
Gewicht Wandaufbau Version	0,5 kg
Kabelquerschnitt für Ein- und Ausgänge	0,15 – 1,3 mm ²
Kabeldurchführungen Wandeinbau Version	bis 6,5 mm Durchmesser
Kabeldurchführungen Wandaufbau Version	bis 7,5mm Durchmesser
Schutzart	IP 30
Elektrische Daten	
Versorgungsspannung	Nennspannung 12 - 48V Arbeitsbereich 11,5 bis 65 V
Leistungsaufnahme	Maximal 3,5W (Displayhelligkeit 100 %, 5V und 15V Ausspeisung Aktiv) Minimal < 0,8W (im Energiesparmodus)
Umgebungsdaten	
Umgebungstemperatur	- 20 °C bis + 65 °C
Lagertemperatur	- 30 °C bis + 80 °C
Luftfeuchtigkeit	100 %, nicht kondensierend
Verschmutzungsgrad	2

Kommunikation	
Bus Systeme	RS485: Modbus Master
	RS485: Modbus Slave
	Ethernet: Modbus TCP/IP Server
	CAN: Hardware implementiert, Software geplant
Eingänge	
Anzahl und Ausführung	4 x Analog- / Digitaleingänge
Spannungsfestigkeit	0 – 65 V
Messbereich	Analoger Messbereich: $0 - 10$ V, 0 - 65V optional
Schaltausgänge	
Anzahl und Ausführung	4 x elektronische Relais
Spannungsfestigkeit	65V
Strombelastbarkeit	1,2 A
5 V Stromversorgungsausgang	
Toleranz	+/- 1,5% max.
Strombelastbarkeit	mind. 350mA
15 V Stromversorgungsausgang	
Toleranz	+/- 2% max.
Strombelastbarkeit	mind. 150mA

Tabelle 1: Technische Daten

6. Verfügbare Versionen

- greenView Wandaufbau:

Zur Montage an einer Wand.

Befestigungslöcher in der Gehäuserückwand.

Kabeleinführungen in der Seiten- und Gehäuserückwand.

Abbildung 1: Wandaufbau Version

- greenView Wandeinbau:

Zum Einbau in eine Wand mit Wandstärke bis max. 30mm.

Befestigungslöcher auf der Frontplatte.

Kabeleinführungen in der Seiten- und Gehäuserückwand.

Abbildung 2: Wandeinbau Version

7.Montage

Der greenView wird an einer Wand befestigt. Vor der Montage sollten die gewünschten Öffnungen für die Kabeleinführung herausgebrochen und die Kabeleinführungen montiert werden. Vor der Montage der Gummi- Kabeleinführungen die Ausbruchstellen mit einem Handentgrater ausreichend entgraten.

Um die Befestigungsbohrungen und den Wandausschnitt (Wandeinbau Version) korrekt durchzuführen, können Sie die beigelegte Bohrschablone verwenden.

8. Anschluss und Inbetriebnahme

Pos. Bild	Name	Erklärung
1	VIN	Eingang Versorgungsspannung, vom Batteriesystem
2	CAN	CAN Bus, reserviert
3	RS485_1	RS485 MASTER Schnittstelle, Anschluss für die Slave-Geräte
4	JP1	Jumper Block zur Konfiguration der MASTER-Schnittstelle, siehe Tabelle RS485 Jumper

5	RS485_2	RS485 Schnittstelle SLAVE-Schnittstelle,		
		Anschluss für ein Master Gerät		
6	JP2	Jumper Block zur Konfiguration der SLAVE-Schnittstelle, siehe Tabelle RS485 Jumper		
7	5V	Ausspeisung 5V für externe Verbraucher.		
8	OUT1	Schaltausgang elektronisches Relais 1		
9	OUT2	Schaltausgang elektronisches Relais 2		
10	OUT3	Schaltausgang elektronisches Relais 3		
11	OUT4	Schaltausgang elektronisches Relais 4		
12	IN1	+15V: Ausspeisung +15V zur Versorgung des Sensors		
		IN: Analog/Digital Eingang		
		GND: Ground		
13	IN2	+15V: Ausspeisung +15V zur Versorgung des Sensors		
		IN: Analog/Digital Eingang		
		GND: Ground		
14	IN3	+15V: Ausspeisung +15V zur Versorgung des Sensors		
		IN: Analog/Digital Eingang		
		GND: Ground		
15	IN4	+15V: Ausspeisung +15V zur Versorgung des Sensors		
		IN: Analog/Digital Eingang		
		GND: Ground		
16	K1	SD Karten Einschub		
17	RJ1	Ethernet Buchse		

Tabelle 2: Anschlussbelegung

8.1 Anschluss an den RS485 Bus

Die Verbindung mit dem RS485 Bus, bzw. mit dem RS485 USB Konverter erfolgt über die 4-pol. Klemme mit der Bezeichnung "RS485" Die Belegung ist auf der Leiterplatte angegeben. Beim RS485 Bus müssen der erste und der letzte Teilnehmer mit einem Abschlusswiderstand versehen werden (Terminierung). Im greenView ist bereits ein Abschlusswiderstand vorhanden, dieser kann mit dem Jumperblock JP1 für die erste Schnittstelle und mit JP2 für die zweite Schnittstelle eingeschaltet werden. Siehe Tabelle weiter oben. Als Werkseinstellung ist dieser Teminierungswiderstand im greenView eingeschaltet, da greenView normalerweise das erste/letzte Gerät am Bus ist.

Bei **einem** Gerät am Bus müssen die BIAS Widerstände eingeschaltet werden. In der Werkseinstellung sind diese Jumper im greenView gesetzt. Es sollten dann also keine weiteren BIAS Widerstände im Bus vorhanden sein.

Das greenView Gerät ist mit einer galvanisch getrennten RS485 Schnittstelle ausgestattet, deshalb muss die Schnittstelle mit 5V DC Spannung versorgt werden. Dazu dienen die Anschlussklemmen VCC und GND. GreenView kann diese 5V selber erzeugen, und auf dem Bus legen. Dazu dienen die Jumper VCC und GND. Wichtig ist, dass es nur eine Einspeisung auf dem Bus gibt. Sinnvoll ist diese Einspeisung am Master Gerät durchzuführen. Deshalb sind bei der Werkseinstellung die Jumper für die 5V Versorgung an der Master Schnittstelle eingeschaltet, an der Slave Schnittstelle ausgeschaltet.

Name	Erklärung
VCC	Geschlossen: Vcc der 5V Versorgung auf Bus
	Offen: Vcc der 5V Versorgung nicht auf Bus
	Achtung: Es darf nur eine 5V Einspeisung im Bus geben!
GND	Geschlossen: GND der 5V Versorgung auf Bus
	Offen: GND der 5V Versorgung nicht auf Bus
	Achtung: Es darf nur eine 5V Einspeisung im Bus geben!
BIAS A	Geschlossen: BIAS Widerstand auf Leitung A
	Offen: Kein BIAS Widerstand auf Leitung A geschaltet
	BIAS Widerstände nur bei einem Gerät im Bus einschalten
BIAS B	Geschlossen: BIAS Widerstand auf Leitung B
	Offen: Kein BIAS Widerstand auf Leitung B
	BIAS Widerstände nur bei einem Gerät im Bus einschalten
TERM	Geschlossen:
	Terminierungswiderstand zwischen Leitung A und B geschaltet
	Offen:
	Kein Terminierungswiderstand zwischen Leitung A und B geschaltet
	Terminierungswidestände (120 Ohm) müssen am ersten und am letzten Gerät im Bus vorhanden sein.

Tabelle 3: RS485 Jumper

8.1.1 Master Schnittstelle:

Die Master Schnittstelle dient zum Anschluss der Slave Geräte. Das können z.B. folgende Geräte sein:

- greenController 75/40
- greenController 140/30
- greenSwitch
- LiPro1-1 RS485
- LiPro1-3 RS485
- LiPro1-6

An der Master Schnittstelle sollte die 5V Versorgung eingeschaltet sein (Werkseinstellung). Dadurch kann der galv. getrennte Bus-Treiber der Slave Geräte mit Strom versorgt werden.

Abbildung 5: RS485 Bus

Jedes Gerät am Bus benötigt eine eigene eindeutige Slave Adresse. Wenn Ihre Geräte noch keine neue Adresse bekommen haben, so stehen diese auf Werkseinstellung (Adresse 1) und müssen konfiguriert werden. Dazu bitte den entsprechenden Abschnitt unter Bedienung lesen.

8.1.2 Slave Schnittstelle:

Zum Anschluss eines PC's bzw. eines Supervisory Control and Data Acquisition (SCADA) Systems.

Für den Anschluss via USB wird ein USB-Konverter benötigt

Der RS485_USB Konverter hat folgende Belegung:

Abbildung 6: Anschlussbelegung RS485 – USB

VCC	rot
Leitung A	Orange
Leitung B	Gelb
GND	Schwarz

 Tabelle 4: Anschlussbelegung RS485 – USB

Der Anschluss erfolgt an die Slave Schnittstelle. Bitte beachten Sie dass die Leitung GND und VCC mit verdrahtet werden sollten und die 5V für die Slave Schnittselle ausgeschaltet (Werkseinstellung) sein sollte.

ACHTUNG:

Wenn die VCC und GND Anschlüsse vertauscht werden, kann die Schnittstelle oder der Konverter beschädigt werden!

Anschluss mit dem RS485 nach Wifi Konverter (KONV_RS485_TO WIFI):

Bitte schauen Sie für eine genauere Beschreibung in die Bedienungsanleitung des Konverters. Bitte achten Sie außerdem darauf, dass dieser Konverter schon einen internen Abschlusswiderstand besitzt.

Anschluss mit dem RS485 nach Ethernet Konverter (KONV_RS485_RS232_TO ETH):

Bitte schauen Sie für eine genauere Beschreibung in die Bedienungsanleitung des Konverters.

8.2 Anschluss von Stromsensoren

Abbildung 7: Stromsensor 100A

Stromsensor: (Anschlussklemme Isensor, 4pol.)	GreenView (Anschlussklemme INx, 3pol.)		
siehe : Abbildung 7: Stromsensor 100A	siehe: Tabelle 2: Anschlussbelegung		
1 = Vin	15V		
2 = GND, 4 = GND	GND		
3 = Vout (0 - 10V)	Vin		
a = Offset, b = Gain	Kalibrierung werksseitig, darf nur von fachkundigen Personen mit entsprechendem Gerät geändert werden		

Sollen Lade- oder Entladeströme erfasst werden, die nicht über einen greenController geführt werden, kann dazu ein externer Stromsensor angeschlossen werden. Dies ist z.B. bei großen Verbrauchern (große Wechselrichter) der Fall, die eine größere Stromaufnahme haben als der Lastausgang, oder natürlich auch wenn kein greenController vorhanden ist. Auch wenn die Batterie noch über andere Quellen (z.B. von einem Generator) geladen wird. Die von uns angebotenen Stromsensoren erzeugen das notwendige Ausgangssignal von 0 bis 10 V entsprechend 0 bis 50A, 0 bis 100A, 0 bis 200A oder 0 bis 400A (je nach Typ). Die Stromsensoren können an einem greenController (wenn vorhanden), oder direkt an greenView angeschlossen werden.

GreenView kann die notwendige Spannungsversorgung von 15V zur Verfügung stellen. Die 15V stehen an den 3 poligen Anschlussklemmen zur Verfügung.

8.3 Inbetriebnahme

8.3.1 Gerätesuche

Wenn Sie alle Verbindungen hergestellt haben, schalten Sie bitte die Batteriespannung ein. Zunächst erscheint der Bootloader Bildschirm. Hier kann unter anderem ein Firmwareupdate durchgeführt werden.

Konfiguration Suche	e:			
Neu	Suchen	000	▲ ▼	
	via Modbus	Geräte		
Gespeichert	Laden			
	von der SD Karte			

Danach öffnet sich die Gerätesuche:

Abbildung 8: Gerätesuche

Dieses Menü wurde eingefügt um den Gerätesuchlauf zu beschleunigen.

Neu

Wollen Sie eine neue Gerätesuche starten stellen Sie über die Schaltfläche "Geräte" die Anzahl der Geräte an der RS485-Master-Schnittstelle ein (z.B. 8 LiPros + 1 greenController = 9 Geräte). Durch Drücken der Schaltfläche **"Suchen"** beginnt der Suchlauf. Dieser dauert an bis die angegebene Anzahl an Geräten gefunden ist. Nach dem erfolgreichen Suchlauf werden die gefundenen Geräte auf der SD-Karte gespeichert.

Haben Sie den Slave Geräten noch keine Adressen vergeben, so starten Sie die Suche zunächst mit 0 Geräten. Sie können später die Adressen vergeben. Sie dazu Kapitel Einstellungen – Adressen

Gespeichert

Ist die Gerätekonfiguration nach einem erfolgreichen Suchlauf auf der SD-Karte gespeichert kann diese durch Drücken des Buttons "Laden" ausgewählt werden.

HINWEIS:

Wird der Gerätesuchlauf mit der Geräteanzahl "000" gestartet arbeitet greenView im Standalone Modus. Mehr dazu finden Sie unter dem Menüpunk 11.1 greenView Standalone Modus.

9. Bedienung

Der Betrieb des *greenViews* erfolgt größten Teils vollautomatisch. Nach erfolgter Installation gibt es nur wenige Aufgaben für den Bediener. Dennoch sollte der Bediener mit dem in diesem Kapitel beschriebenen Betrieb und der Wartung des *greenViews* vertraut sein. Nach der Inbetriebnahme sind zunächst einige Batterieparameter und die Uhrzeit einzustellen. Die Schritte 9.3.5 Einstellungen – Batterie und 9.3.1 Einstellungen – Display sind also immer erforderlich, die Einstellung der Adressen muss bei noch nicht konfigurierten Slave Geräten durchgeführt werden. Andere Einstellungen müssen nur bei Bedarf geändert werden.

Neu ab Firmware Rev. 1.04.00:

Geräte können jetzt benutzerspezifisch benannt werden. Dazu einen langen klick auf den grünen Überschriftbalken machen. Es öffnet sich eine Tastatur zum Eingeben des Namens. So lassen sich jetzt z.B. die greenSwitch mit "Last Allgemein" "Seilwinde" und "Ladung" bezeichnen. Zu lange Namen werden automatisch gekürzt. Hinter dem Doppelpunkt ist weiterhin die Slave Adresse des Gerätes sichtbar.

9.1 Übersichtsanzeigen

9.1.1 Ansicht - Home

Abbildung 9: Home

Mitte:

Berechneter Akku Ladezustand. Die Anzeige ist in der Werkseinstellung spannungsbasierend. Ein voller Kreis steht für 100% ein leerer Kreis für 0%. Ein nahezu leerer Akku wird zusätzlich durch Änderung der Ringfarbe von grün auf gelb (<10%) oder rot (<5%) signalisiert. Ausgewertet wird die niedrigste Spannung die von den BMS Systemen gemeldet wird. Ist kein BMS vorhanden, so wird die greenController Spannung verwendet. Ab welcher Spannung 100% bzw. 0% angezeigt wird, kann über die Zellparameter eingestellt werden.

Die Anzeige kann auf Amperestundenzähler umgestellt werden → Siehe Konfiguration. Diese Anzeige kann genauer sein. Allerdings müssen dann auch alle Ladeströme und Entladeströme über greenView erfasst werden.

Links:

Die Anzeige zeigt die Summe aller Ladeleistungen. Die Leistung wird ermittelt aus der Systemspannung und der Summe der Ladeströme. Dabei werden folgende Ströme berücksichtigt:

- Angeschlossene und als I_{in} konfigurierte Stromsensoren an greenView
- Angeschlossene und als I_{in} konfigurierte Stromsensoren am greenController
- Ladeströme im greenController selber

Die Systemspannung wird aus der Summe der Spannungen von den angeschlossenen LiPros (BMS Systemen) ermittelt. Ist kein LiPro (BMS System) vorhanden (z.B. bei Bleibatterien), so wird die Spannung aus der gemessenen Spannung eines greenControllers ermittelt. Arbeitet greenView im Standalonemodus so muss die Spannung über die Eingänge von greenView gemessen werden (siehe 11.1 greenView Standalone Modus).

Der Maximalwert entspricht der Summe der möglichen Ströme multipliziert mit der Systemspannung. So wird der Messbereich 1200W betragen, wenn die Systemspannung 12V ist und nur ein 100A Sensor angeschlossen und konfiguriert ist.

Kurz vor dem erreichen der maximalen Leistung wird die Anzeigenfarbe von grün auf gelb (90%) bzw. rot (95%) umgeschaltet um zu signalisieren, dass die Leistung des Systems fast ausgereizt ist.

Rechts:

Die Anzeige zeigt die Summe der Leistung aller Verbraucher an. Die Leistung wird ermittelt aus der Systemspannung und der Summe aller Lastströme. Dabei werden folgende Ströme berücksichtigt:

- Angeschlossene und als I_{out} konfigurierte Stromsensoren an greenView
- Angeschlossene und als I_{out} konfigurierte Stromsensoren am greenController
- Lastströme im greenController selber

Die Systemspannung wird aus der Summe der Spannungen von den angeschlossenen LiPros (BMS Systemen) ermittelt. Ist kein LiPro (BMS System) vorhanden (z.B. bei Bleibatterien), so wird die Spannung aus der gemessenen Spannung eines greenControllers ermittelt. Arbeitet greenView im Standalonemodus muss die Spannung über die Eingänge von greenView gemessen werden (siehe Kapitel 11.1 greenView Standalone Modus).

Der Maximalwert entspricht der Summe der möglichen Ströme multipliziert mit der Systemspannung. So wird der Messbereich 1200W betragen, wenn die Systemspannung 12V ist und nur ein 100A Sensor angeschlossen und konfiguriert ist.

Kurz vor dem erreichen der maximalen Leistung wird die Anzeigenfarbe von grün auf gelb (90%) bzw. rot (95%) umgeschaltet um zu signalisieren, dass die Leistung des Systems fast ausgereizt ist.

OBEN LINKS:

Anzeige	Einheit	Erklärung				
Ubat.	V	Die ermittelte Systemspannung				
Ibat.	А	Der ermittelte Batteriestrom => Ladestrom - Laststrom				
Iin	А	Summe Ladeströme				
Iout	А	Summe Lastströme				
Cnt	Ah	Der Amperestundenzähler kompensiert um Peukert Faktor und Ladewirkungsgrad. Funktioniert erst nach erster Vollladung korrekt. Siehe Zellenparameter				

Tabelle 5: Ansicht Home

9.1.2 Ansicht - gView

Die Anzeige gView zeigt verschiedene interne Messwerte von greenView an.

Inputs:

Anzeige der Spannungen an den Eingängen in Volt.

Outputs:

Zustand der Schaltausgänge. Leuchtet die Anzeige grün, so ist der Ausgang eingeschaltet (Kontakt des elektronischen Relais ist geschlossen)

BMS Master:

Anzeige	Einheit	Erklärung
Min	V	Aktuell niedrigste Zellspannung
Max	V	Aktuell höchste Zellspannung
Dif	V	Aktuelle Differenz zwischen höchster und niedrigster Zellspannung
Bal	V	Aktuelle an LiPros gesendete Ausgleichsspannung (Balancer Spannung)

Tabelle 6: Ansicht gView

9.1.3 Ansicht - Graph

30.	01.19 17:55	:14						*s* *m	• 0		1	:
Но	ne gView <mark>G</mark> r	aph IS	ensor (GC100/	30 LiP	ro gSw	/itch					
					Gra	aph						
CH1	Home:U_BA	г		CH2	Home:	BAT	_	•	т [1	2 Hou	rs ∣▼	
30.0												9.00
25.0												7.50
20.0												6.00
15.6												4.50
10.0												3.00
												1.50
0.0	12 -11 -	10 -	9 -	8 -	-7 -	-6 -	5 -	4 -:	3 -	2	-1	0.00

Hier wird der zeitliche Verlauf von zwei ausgewählten Messwerten seit Einschalten des Gerätes angezeigt.

Die Y-Darstellung skaliert automatisch auf den höchsten und niedrigsten Wert. Der aktuellste Wert wird am rechten Rand angezeigt.

Daten vor dem letzten Einschalten, können von der SD- Karte ausgelesen werden, sie sind hier nicht verfügbar.

9.1.4 Ansicht - ISensor

Abbildung 12: ISensor

Hier werden die Messwerte der einzelnen Stromsensoren angezeigt. In der Home Anzeige werden die Summen der Lade- und Lastströme dargestellt.

9.1.5 Ansicht FSensor

📮 greenViewDesktop – 🗆 🗙							
17.02.19 12:15	17.02.19 12:15						
Home gView Graph	ISensor <mark>FSensor</mark> GC1	40/30 LiPro gSwitch					
Level IN1	Level IN2	Level IN3	Level IN4				
0%	0 %	0 %	0 %				

Abbildung 13: Level Sensor

Hier werden die Messwerte der einzelnen Füllstandsensoren angezeigt. Diese können im Inputs Menü konfiguriert werden.

Die Einzelnen Tanks können durch einen langen "Touch" auf die jeweilige Überschrift mit einem eigenen Namen konfiguriert werden (z.B. "Abwasser", oder "Frischwasser").

Am besten eignen sich hierfür Sensoren mit 0 - 10V Ausgang. Aber auch Sensoren mit anderen Ausgangsspannungen können verwendet werden. Im Konfigurationsmenü kann eingestellt werden, welche Spannung 0% und welche Spannung 100% repräsentiert.

Im Konfigurationsmenü der Ausgänge, können Sie auch Schaltschwellen für die Ausgänge hinterlegen, um so z.B. eine Pumpe bei einem bestimmten Schwellwert einzuschalten.

9.1.6 Ansicht - GreenController

Abbildung 14: greenController

Anzeige	Einheit	Erklärung
Chg Current	A	 Der Ladestrom (nach dem MPP Konverter, also nicht unbedingt der Strom an den Eingangsklemmen) des greenControllers. Inklusive aller an diesem greenController angeschlossener Stromsensoren. Gelb bei 90% des möglichen Maximalstroms. Rot bei 95% des möglichen Maximalstroms.
Chg Power	W	Die Ladeleistung des greenControllers inklusive aller an diesem greenController angeschlossener Stromsensoren. Gelb bei 90% der möglichen Maximalleistung. Rot bei 95% des möglichen Maximalleistung.
Load Current	A	Der Laststrom des greenControllers inklusive aller an diesem greenController angeschlossener Stromsensoren. Gelb bei 90% des möglichen Maximalstroms. Rot bei 95% des möglichen Maximalstroms.
Load Power	W	Die Leistung der Lasten an diesem greenController Inklusive aller an diesem greenController angeschlossener Stromsensoren.

INT	°C	Die interne Temperatur des greenControllers in °C. GELB: > +60 °C ROT: > +70 °C (Abschaltung bei 75°C) BLAU: < -10 °C DUNKELBLAU: < - 20°C
Bat	°C	Die Temperatur der Batterie (externer Temperatursensor) GELB: > 45 °C ROT: > 55 °C (Abschaltung bei 60°C) BLAU: < 0 °C DUNKELBLAU: < -20 °C
ERR	-	GRAU: Keine Fehlermeldung ROT: Der greenController meldet einen Fehler
OUT	-	GRAU: Der Lastausgang ist abgeschaltet GRÜN: Der Lastausgang ist eingeschaltet

Tabelle 7: Ansicht greenControler

9.1.7 Ansicht - LiPro

Abbildung 15: LiPro

Anzeige	Einheit	Erklärung
Batterie	V	Die vom LiPro gemessene Spannung der Zelle
		GELB:
		Zellspannung > Balancerspannung (siehe: 11.4 Was ist ein intelligenter bzw. dynamischer Zellausgleich?) oder Zellspannung < LVP Stop Spannung ROT:
		Zellspannung > OVP Start Spannung oder Zellspannung < LVP Alarm Spannung
Thermometer °C Die vom LiPro		Die vom LiPro gemessene Temperatur
		GELB:
		Temperatur >= eingestellte Wiedereinschalttemperatur am LiPro
		Werkseinstellung 75°C
		ROT:
		Temperatur >= eingestellte Abschalttemperatur am LiPro
		Werkseinstellung 80°C
		BLAU:
---------	---	---
		Temperatur < -10°C
		DUNKELBLAU:
		Temperatur < -20°C
LVP LED	-	GRÜN:
		Kein Tiefentladeschutz aktiv, elektronisches Relais ist geschlossen
		GRAU:
		Tiefentladeschutz aktiv, elektronisches Relais ist geöffnet
OVP LED	-	GRÜN:
		Kein Überladeschutz aktiv, elektronisches Relais ist geschlossen
		GRAU:
		Überladeschutz aktiv, elektronisches Relais ist geöffnet
BL LED	-	GRAU: Kein Ladungsausgleich aktiv
		BLAU BLINKEND: Ladungsausgleich aktiv
ERR LED	-	GRAU: KEIN FEHLER (MODE 0 oder 1)
		ROT BLINKEND: Der LiPro meldet einen Fehler (MODE 2 bis 7)
		Hinweis:
		Anzeige bei LiPro1-1-RS485 oder LiPro1-3-RS485 nicht vorhanden

Tabelle 8: Ansicht Lipro

Abbildung 16: LiPro- erweiterte Parameter

In neueren Firmware Versionen ist es möglich, erweiterte Parameter bei den LiPro's einzustellen. Mit einem Touch auf die LiPro Ansicht, unterhalb der grünen Kopfzeile öffnet sich das Fenster.

Sie können im Fester auswählen ob der LiPro (die Zelle) nicht bei der Gesamtspannungsberechnung berücksichtigt werden soll. Dies ist immer dann sinnvoll, wenn Sie mehrere LiPro's auf einer Zelle bzw. auf einem parallelgeschalteten Zellverbund montiert haben, um z.B. den Ausgleichsstrom zu erhöhen, oder ein mehrfach redundante Zellüberwachung realisieren möchten.

Mit eine Touch auf "Expert parameters" kommen Sie in ein programmier- Menü um Parameter im LiPro zu verändern (zu Programmieren). Dies kann z.B. nötig sein, wenn Sie keine Winston LiFeYPO4 Zellen haben. Details zu den Parametern entnehmen sie bitte der LiPro Bedienungsanleitung.

Mit den Pfeil, können Sie die Rohwerte verändern. Rechts daneben, wird der korrekt skalierte Wert mit der zugehörigen Einheit angezeigt. Wenn Sie "aktiviere Stellenauswahl" markieren, können Sie den Cursor verändern, um z.B. einen Wert direkt in 10er oder 100er Schritten zu verändern. Veränderte Werte werden rot markiert. Mit "Speichen", senden Sie diese Werte zum LiPro. Die Werte werden dauerhaft im EEPROM des LiPro's gespeichert!

Diese Liste kann gescrollt werden.

Dieser Schritt auf allen LiPro's wiederholt werden.

EC5

9.1.8 Ansicht - GreenSwitch

Abbildung 17: greenSwitch

Anzeige	Einheit	Erklärung
OFF	-	Schaltet den greenSwitch aus. Der Ausschaltbefehl wird an greenSwitch gesendet. Nachdem der Schaltvorgang ausgeführt wurde und die greenSwitch Parameter wieder eingelesen wurden wechselt die LED Anzeige auf OFF. Dies kann einige Sekunden dauern.
AUTO	-	Schaltet greenSwitch in den AUTO Modus. Der Befehl wird an greenSwitch gesendet. Nachdem der Befehl ausgeführt wurde und die greenSwitch Parameter wieder eingelesen wurden wechselt die LED Anzeige auf AUTO. GreenSwitch schließt und öffnet den Kontakt abhängig von den BMS Informationen und dem eingestellten Modus. Ob der greenSwitch Kontakt geschlossen ist, kann an den beiden kleinen LEDs ON bzw. OFF unten rechts erkannt werden. Dies kann einige Sekunden dauern.

ON	-	Schaltet greenSwitch DAUERHAFT ein. Der Einschaltbefehl wird an greenSwitch gesendet. Nachdem der Schaltvorgang ausgeführt wurde und die greenSwitch Parameter wieder eingelesen wurden wechselt die LED Anzeige auf ON. Dies kann einige Sekunden dauern. ACHTUNG: BMS INFORMATIONEN WERDEN NICHT AUSGEWERTET! SCHUTZFUNKTIONEN DEAKTIVIERT			
ERROR		Falls ein Fehler beim Schalten auftritt, oder die Temperatur zu hoch steigt, schaltet greenSwitch in den Error Modus. Die rote LED leuchtet.			
Current	А	Geschätzter Strom über Schaltkontakt			
INT	°C	Interne Geräte Temperatur			
		GELB:			
		Warnung Temperatur > 60°C			
		ROT:			
		Warnung Temperatur > 70°C, kurz vor Abschaltung			
		BLAU:			
		Warnung Temperatur < -10°C			
		DUNKELBLAU:			
		Warnung Temperatur < -20°C			
LVP		GRÜN: BMS LVP OK			
		GRAU: BMS LVP NICHT OK			
OVP		GRÜN: BMS OVP OK			
		GRAU: BMS OVP NICHT OK			
ON /OFF		ON GRÜN: Kontakt ist geschlossen			
		OFF GRÜN: Kontakt ist offen			

Tabelle 9: Ansicht greenSwitch

9.2 Symbole/Schaltflächen9.2.1 Symbole-Modbus

Blinken die Pfeile neben dem Symbol **"M"** ist die Modbus-Master-Schnittstelle aktiv. Blinken die Pfeile neben dem Symbol **"S"** ist die Modbus-Slave-Schnittstelle aktiv.

9.2.2 Schaltfläche-SD-Karte

Um die SD-Karte im laufenden Betrieb sicher zu entnehmen muss diese, durch Drücken der Schaltfläche SD-Karte entmountet werden (vgl. Windows Befehl "auswerfen"). Ist dieser Vorgang erfolgreich ändert sich das Symbol:

Dann kann die SD-Karte entnommen werden. Wenn die SD-Karte wieder eingesetzt ist, kann diese durch erneutes Drücken des Buttons wieder gemountet werden. Ist der Vorgang erfolgreich, wird das ursprüngliche Symbol wieder angezeigt.

Hinweis:

Ist die SD-Karte nicht gemountet, wird nicht weiter geloggt und das Einstellungsmenü lässt sich nicht öffnen.

Die SD-Karte nicht während dem Bootvorgang oder Speichern von Einstellungen entnehmen, Einstellungen können verloren gehen!

9.2.3 Schaltfläche-Log

Das Log Fenster wird über diese Schaltfläche erreicht.

Hier können Fehlermeldungen und Informationen (ua. IP-Adresse des greenViews) eingesehen werden. Die Logs werden mit Zeitstempel auf der SD-Karte in der Datei "SLOG.txt" gespeichert.

9.2.4 Schaltfläche-Einstellungen

Die Einstellungen werden über den folgenden Button:

vom Hauptbildschirm aus erreicht. Alle Einstellungen werden mit dem Button:

gespeichert.

Wurden Einstellungen versehentlich geändert, oder soll nichts gespeichert werden, dann kann das Einstellungsmenü über den Button:

verlassen werden.

9.3 Einstellungen

9.3.1 Einstellungen – Display

Abbildung 18: Display

Datum

Das Datum wird in dem Format "JJJJ:MM:TT" eingestellt.

Zeit

Die Systemzeit wird in dem Format "hh:mm" eingestellt. Dank RTC (Realtime Clock) bleiben Zeit und Datum auch dann aktuell wenn greenView ausgeschaltet ist.

Helligkeit

Stellt die Display Beleuchtung ein. Geringere Werte reduzieren den Stromverbrauch.

Energiesparmodus

Die Zeit seit der letzten Bedienung, bis in den Energiesparmodus geschaltet wird. Im Energiesparmodus wird u.a. die Hintergrundbeleuchtung abgeschaltet und das System arbeitet effizienter.

Sprache:

Ändert die Spracheinstellungen. Wie alle anderen Parameter, wird die Einstellung mit dem Betätigen der "Speicher" Schaltfläche wirksam.

9.3.2 Einstellungen – Eingänge

In diesem Menü kann die Funktion der Eingänge konfiguriert werden.

Für die digitalen Eingangsfunktionen lässt sich die Funktion invertieren und die Schaltschwellen in Volt anpassen (Hysterese).

Display I	ingänge Ausgänge Kalibrierung	Batterie Zelle	Adressen Netz	werk
	Betriebsart	In∨ertiert	Ein	Aus
Eingang	¹ Sensor 100A in ▼	Ja	002	001
	Eingangsfunktion	Funktion invertiert	Einschaltschwelle in Volt	Ausschaltschwelle in Volt
Eingang	² Sensor 100A out I▼	Ja	002	001
	Eingangsfunktion	Funktion invertiert	Einschaltschwelle in Volt	Ausschaltschwelle in Volt
Eingang	³ Isometer Alarm 🛛 💌	Ja	020	015
	Eingangsfunktion	Funktion invertiert	Einschaltschwelle in Volt	Ausschaltschwelle in Volt
Eingang	⁴ Spannung 🛛 🗸	Ja	020	015
	Eingangsfunktion	Funktion invertiert	Einschaltschwelle in Volt	Ausschaltschwelle in Volt
				\bigotimes

Abbildung 19: Eingänge

Mode	Erklärung	
Abgeschaltet	Eingang ohne Funktion	
Sensor 50A In	50A Stromsensor am Eingang.	
	Der Strom wird zu den Ladeströmen hinzuaddiert.	
Sensor 100A In	100A Stromsensor am Eingang.	
	Der Strom wird zu den Ladeströmen hinzuaddiert.	
Sensor 200A In	200A Stromsensor am Eingang.	
	Der Strom wird zu den Ladeströmen hinzuaddiert.	
Sensor 400A In	400A Stromsensor am Eingang.	
	Der Strom wird zu den Ladeströmen hinzuaddiert.	
Sensor 600A In	600A Stromsensor am Eingang.	
	Der Strom wird zu den Ladeströmen hinzuaddiert.	

Sensor 50A Out	50A Stromsensor am Eingang.
	Der Strom wird zu den Lastströmen hinzuaddiert.
Sensor 100A Out	100A Stromsensor am Eingang.
	Der Strom wird zu den Lastströmen hinzuaddiert.
Sensor 200A Out	200A Stromsensor am Eingang.
	Der Strom wird zu den Lastströmen hinzuaddiert.
Sensor 400A Out	400A Stromsensor am Eingang.
	Der Strom wird zu den Lastströmen hinzuaddiert.
Sensor 600A Out	600A Stromsensor am Eingang.
	Der Strom wird zu den Lastströmen hinzuaddiert.
Isometer Alarm	 Die digitale Eingangsfunktion "Isometer Alarm" ist speziell für den Inselbetrieb mit 230V Wechselrichter und Isolationsüberwachung gedacht . Meldet die Isolationsüberwachung einen Fehler und schaltet den Eingang auf eine Spannung größer als bei "EIN" eingestellt, löst das eine Fehlermeldung bei greenView aus. Die Meldung lässt sich entfernen wenn die Isolationsüberwachung den Eingang auf eine Spannung kleiner als bei "AUS" eingestellt legt. Unter "Invertiert" löst der Alarm bei Spannungen kleiner "AUS" aus und schaltet sich bei Spannungen größer "EIN" ab. Die korrekten Spannungswerte entnehmen Sie aus dem Datenblatt der eingesetzten Isolationsüberwachung.
Spannung	Die Eingangsfunktion "Spannung" ist relevant für den Standalone Betrieb von greenView. Mehr dazu finden Sie im Kapitel 11.1 greenView Standalone Modus.
Füllstand	 Die Eingangsfunktion "Füllstand" dient u.a. zur Darstellung von verschiedenen Sensoren (z.B. Tankfüllstand). Mit "EIN/MAX" stellen Sie die maximale Ausgangsspannung des genutzten Sensors in "V" ein. Mit "AUS/MIN" stellen Sie die minimale Ausgangsspannung des Sensors in "V" ein. Daraus ergibt sich der Ausgangsspannungsbereich des Sensors "Umin" bis "Umax". Mit der Ausgangsfunktion Füllstand, siehe Kapitel 9.3.3 Einstellungen – Ausgänge können Sie innerhalb des Ausgangsspannungsbereichs Schaltschwellen für die Ausgänge in "%" festlegen. Der Füllstand wird mit Tank Symbolen im Tab Fsensor angezeigt. Die Sensor Spannung wird unter greenView Inputs angezeigt, siehe 9.1.2 Ansicht

- gView. Damit der Modus korrekt funktioniert muss die Spannung
"EIN/MAX" größer als die Spannung "AUS/MIN" sein.

Tabelle 10: Eingangsmodien

9.3.3 Einstellungen – Ausgänge

In diesem Menü kann die Funktion der Ausgänge konfiguriert werden:

Abbildung 20: Ausgänge

Mode	Erklärung
Abgeschaltet	Ausgang wird nicht geschaltet.
SOC	SOC → State of Charge, Ausgang wird abhängig vom Ladezustand der Batterie geschaltet. Schaltschwellen in Prozent.
Cell LVP	Ausgang wird geschaltet, wenn mindestens eine der Zellen die eingestellte LVP Start Spannung (Zellparameter) unterschreitet und abgeschaltet, wenn die Spannung aller Zellen über der LVP Stopp Schwelle liegen.
Cell OVP	Ausgang wird geschaltet, wenn mindestens eine der Zellen die eingestellte OVP Start Spannung überschreitet und abgeschaltet, wenn alle Zellen unter der OVP Stopp Spannung liegen.
Alarm	Ausgang wird geschaltet wenn: - einer der Zellen die LVP Alarm Spannung unterschreitet - einer der Zellen die OVP Alarm Spannung überschreitet - eines der angeschlossenen Geräte einen Fehler meldet - Ein Kommunikationsfehler auftritt - Ein Isometer Alarm auftritt
Füllstand 1, Füllstand 2, Füllstand 3, Füllstand 4	Mit dem Ausgangsmodus Füllstand X kann ein Ausgang in Abhängigkeit einer Spannnung am Eingang 1 bis 4 geschaltet werden. "1" steht dabei für Eingang 1, "2" für Eingang 2. Der Ausgangsmodus Füllstand X kann nur dann eingeschaltet werden, wenn vorher der dazugehörige Eingangsmodus Füllstand aktiviert wurde. Die Schaltschwellen der Ausgänge werden in % des Ausgangsspannungsbereichs des Sensors eingestellt. Wie dieser eingestellt wird sehen Sie unter 9.3.2 Einstellungen – Eingänge. Wird für den Ausgangsspannungsbereich z.B. 5V bis 10V gewählt, bedeutet der Wert 50 in der Schaltfläche " EIN ", dass der Ausgang ab einer Spannung von 7,5V und höher eingeschaltet wird (Relais geschlossen). Bei dem Wert 40 in der Schaltfläche " AUS " wird der Ausgang ab einer Spannung von 7V und niedriger ausgeschaltet (Relais geöffnet). Die Schaltfläche " Invertiert " kehrt das Verhalten um. Damit der Modus korrekt funktioniert muss die Spannung " EIN " größer als die Spannung " AUS " sein

Tabelle 11: Ausgangsmodien

9.3.4 Einstellungen – Kalibrierung

Display Ein	gänge Ausg	änge Kalibrie	erung B	atterie Zelle	Adressen	Netzwerk	
	Messwert	Offset		Gain		Spannungs	teiler
Eingang 1	0.000	010	▲ ▼	2481	▲ ▼	10	▲ ▼
	Aktueller Messwert	Nullwert Korrektur		Endwert Korrektur		Vdiv Faktor/10	
Eingang 2	0.000	014	▲ ▼	2498	•	10	•
	Aktueller Messwert	Nullwert Korrektur		Endwert Korrektur		Vdiv Faktor/10	
Eingang 3	0.000	010	▲ ▼	2503	▲ ▼	10	▲ ▼
	Aktueller Messwert	Nullwert Korrektur		Endwert Korrektur		Vdiv Faktor/10	
Eingang 4	0.000	012	▲ ▼	2494	•	10	▲ ▼
	Aktueller Messwert	Nullwert Korrektur		Endwert Korrektur		Vdiv Faktor/10	
()							\bigotimes

Abbildung 21: Kalibrierung

Hier können die Analogeingänge kalibriert werden. Eine erste Kalibrierung wird werksseitig durchgeführt.

Im Normalfall müssen Sie hier nichts machen. Falls Sie größere Abweichung der Messwerte von Sensoren an den analogen Eingängen feststellen, können Sie diese Abweichung hier kompensieren. Voraussetzung hierfür ist eine genaue Spannungsquelle oder ein genaues Multimeter.

Schließen Sie zunächst die Eingänge kurz und stellen Sie die Offset Werte so ein, dass gerade so "0,000" als Messwert angezeigt wird. Geben Sie anschließenden eine Spannung von 10V auf die Eingänge und verändern Sie den "Gain" Wert solange bis als Messwert 10V angezeigt wird.

Das Feld "**Spannungsteiler"** ist nur für den Eingangsmodus "**Spannung"** relevant. Mit einem vor den Eingang geschalteten Spannungsteiler lässt sich der Messbereich erweitern. Mehr dazu finden Sie unter dem Menüpunkt 11.1 greenView Standalone Modus. Den passenden Spannungsteiler erhalten Sie auf Anfrage bei uns.

Für den Normalbetrieb sind hier keine Änderungen nötig !

9.3.5 Einstellungen – Batterie

Abbildung 22: Batterie

Zelltyp

Hier kann ein vorhandener Zelltyp aus der Tabelle ausgewählt werden. Details zu den Zellparametern finden Sie im Kapitel 9.3.6 Einstellungen – Zelle.

SOC Mode

Sie können wählen zwischen dem spannungsbasierten- oder dem strombasierten SOC-Modus. Der spannungsbasierte SOC-Modus kann je nach Zelltyp auf Grund der flachen Ladekurve relativ ungenau sein. Besser ist der strombasierte SOC-Modus. Dieser ermittelt erst ab wann die Batterie voll geladen ist und berechnet dann in Abhängigkeit von den Lade- und Lastströmen den momentanen Ladezustand der Batterie. Der strombasierte SOC-Modus erfordert zwingend, dass alle ein- und ausgehenden Ströme über Stromsensoren erfasst werden. Es sind mindestens 2 Stromsensoren (Ladestrom, Laststrom) erforderlich.

Kapazität

Stellen Sie hier die Kapazität der angeschlossenen Zellen ein, sollten Sie mehrere Zellen parallel (nicht Reihe) geschaltet haben, dann die Gesamtkapazität.

Zellen

Stellen Sie hier die Anzahl der Zellen in Reihenschaltung ein.

9.3.6 Einstellungen – Zelle

Hier können die Parameter der Zellendatenbank verändert werden. Zunächst den Parameter auswählen und dann zum Verändern die Schaltfläche "Stift" auswählen. Es öffnet sich ein neues Fenster in dem der Wert editiert werden kann. Teilweise wird hier auch nochmal zusätzlich (als Hilfe) der Wert mit der Anzahl der Zellen multipliziert angezeigt um zu verdeutlichen wie sich der Wert bezogen auf die Gesamtspannung des Systems verhält.

Display Eingä	inge	Ausgänge Kalibrieru	ng Batterie <mark>2</mark>	Zelle Adressen	Netzwerk	
Zell-	Nr.	Тур	Uvoll [mV]	Uleer [mV]	l∨oll [%]	Tvoll
parameter	0	LiFeYPO4 (3,3V)	3650	2800	4	3
	1	LiFePO4 (3,3V)	3650	2700	4	3
	2	LiFeMnPO4 (3,2V)	3600	2900	4	3
	3	LTO (2,4V)	2700	1850	4	3
	4	Lithium-Ion (3,7V)	2700	2600	4	3
	5	NiCd (1,2V)	1500	1000	4	3
	6	NiMH (1,2V)	1400	1000	4	3
	7	Pb (2V)	2200	2000	4	3
						_
	Paramete	er auswählen und den Stift zum Bearbei	ten anklicken			
			1			
_						
\bigcirc						

Abbildung 23: Zelle

Parameter	Erklärung		
Nr.	Zell Typnummer. Nicht veränderbar.		
Тур	Bezeichnung bzw. Name des Parametersatzes. Nicht veränderbar.		
Uvoll	Für Strom basierende SOC Berechnung relevant.		
	Spannung ab der Akku voll erkannt wird.		
	Wenn die automatische 100% Kalibrierung der SOC Anzeige nicht durchgeführt wird, prüfen Sie bitte diesen Wert. Wir empfehlen folgenden Wert:		
	Uvoll= <u>Ladeschlussspannung</u> – 100 mv Zellenanzahl		
	Ladeschlussspannung = Die Ladeschlussspannung Ihre Ladegeräts mit der niedrigsten Ladeschlussspannung		

Uleer	Spannung ab der Akku leer erkannt wird
Ivoll	Nur für Strom basierende SOC Berechnung relevant.
	Ladestrom muss unter x % der Akkukapazität fallen um Akku voll (100% SOC) zu erkennen. Zum Beispiel bedeutet eine Angabe von 4% und einem Akku von 1000Ah Kapazität, dass zur Akku voll Erkennung der Ladestrom unter 40A sinken muss. Um diese Funktion faktisch abzuschalten, stellen Sie den Wert auf Maximum (100%).
Tvol	Nur für Strom basierende SOC Berechnung relevant.
	Zeit für die die Bedingung Ivoll und Uvoll erfüllt sein muss, bevor Akku voll (100% SOC) erkannt wird.
Peukert	Nur für Strom basierende SOC Berechnung relevant.
	Dies ist der Peukert Exponent. Mit diesem Faktor kann berücksichtigt werden, dass bei hohen Entladeströmen weniger Akkukapazität genutzt werden kann. Ein Wert von 105 steht für einen Exponenten von ^1.05
CEF	Nur für Strom basierende SOC Berechnung relevant.
	Dieser Wert steht für "Charge efficiency factor" und gibt den Ladewirkungsgrad an. Also wie viel Prozent des Ladestrom tatsächlich im Akku gespeichert wird.
LVP Start	Nur für Ausgangs-Betriebsart LVP relevant
	Siehe Kapitel Ausgänge
	Diese Spannung ist nur für den greenView eigenen Schaltausgang. Sie hat nichts mit der im LiPro programmierten Spannung zu tun.
LVP Stopp	Nur für Ausgangs-Betriebsart LVP relevant
	Siehe Kapitel Ausgänge
	Diese Spannung ist nur für den greenView eigenen Schaltausgang. Sie hat nichts mit der im LiPro programmierten Spannung zu tun.
OVP Start	Nur für Ausgangs-Betriebsart OVP relevant
	Siehe Kapitel Ausgänge
	Diese Spannung ist nur für den greenView eigenen Schaltausgang. Sie hat nichts mit der im LiPro programmierten Spannung zu tun.
OVP Stopp	Nur für Ausgangs-Betriebsart OVP relevant
	Siehe Kapitel Ausgänge

	Diese Spannung ist nur für den greenView eigenen Schaltausgang. Sie hat nichts mit der im LiPro programmierten Spannung zu tun.
LVP Alarm	Wird diese Spannung an einer Zelle unterschritten, so ertönt ein Warnsignal und falls ein Ausgang in der Betriebsart ALARM konfiguriert ist, wird dieser geschaltet.
	Diese Spannung ist nur für greenView eigenen Schaltausgang bzw. dem greenView eigenen Alarm Buzzer. Sie hat nichts mit der im LiPro programmierten Spannung zu tun.
OVP Alarm	Wird diese Spannung an einer Zelle überschritten, so ertönt ein Warnsignal und falls ein Ausgang in der Betriebsart ALARM konfiguriert ist, wird dieser geschaltet
	Diese Spannung ist nur für greenView eigenen Schaltausgang bzw. dem greenView eigenen Alarm Buzzer. Sie hat nichts mit der im LiPro programmierten Spannung zu tun.

Tabelle 12: Zellparameter

9.3.7 Einstellungen – Adressen

Abbildung 24: Adressen

Dies ist der Adress- Assistent. Jedes Gerät am Bus benötigt eine eigene, eindeutige Adresse. Ab Werk sind die ECS Geräte auf Slave Adresse 1 konfiguriert (außer greenController). Das heißt die Adressen müssen verändert werden. Dazu wird das zu konfigurierende Gerät alleine an den Bus angeschlossen (alle anderen Geräte abstecken, oder die Spannungsversorgung unterbrechen). Unter "Aktuelle Adresse" wird die Adresse angegeben, auf dem das Gerät aktuell eingestellt ist. Unter "neue Adresse" wird die Adresse eingestellt, die das Gerät bekommen soll. Nach dem Betätigen der Schaltfläche "Ausführen" ist das Gerät konfiguriert. Nachdem alle Geräte konfiguriert wurden. Alle Geräte wieder an den Bus anschließen, mit der Schaltfläche "Restart u. Gerätesuche" greenView neustarten. Alle Geräte im Bus sollten jetzt gefunden werden und in den entsprechenden Tabs angezeigt werden.

Hinweis:

Die Schaltfläche "Speichern" hat hier keine Funktion.

9.3.8 Einstellungen – Netzwerk

Display Eingänge	Ausgänge	Kalibrierung	Batterie Zelle	Adressen	Netzwerk	
GreenView Sla∨e Adresse	050 Slave Adresse für	eden Slave Anschluss				
Ethernet deakti∨ieren	Ja Deaktiviere Ether	net um Energie zu sparer	ı, starte das Gerät neu um	die Einstellung zu üb	ernehmen	
\bigcirc						\bigotimes

GreenView Slave Adresse:

Hier kann die Slave Adresse des greenViews eingestellt werden. Diese ist relevant für die Slave Schnittstelle. Der übergeordneten SCADA Anwendung muss diese Adresse mitgeteilt werden.

Hinweis:

Kein Gerät auf dem RS485 Bus sollte die gleiche Adresse wie greenView haben. Mehr dazu finden Sie unter dem Menüpunkt 11.2 Modbus TCP/IP Server.

Ethernet deaktivieren:

Werden die Funktionen der Ethernet-Schnittstelle nicht genutzt, kann diese hier deaktiviert werden. Dann arbeitet greenView energiesparender.

Hinweis:

Die Änderung wird erst nach Betätigung der Schaltfläche "Speichern" und einem Neustart wirksam, das Firmware Update via Ethernet funktioniert trotzdem.

9.4 Firmware Update

Via Ethernet

Bei einem Neustart des Gerätes wird für etwa 5s der Bootloader eingeblendet. Möchten Sie ein Firmware Update durchführen, so wählen Sie bitte direkt nach Erscheinen des Bootloaders die Schaltfläche "Stay in Bootloader" aus. Wenn das Gerät mit ihrem LAN Netzwerk verbunden ist, können Sie über einen Browser auf das Gerät zugreifen. Dazu geben Sie bitte die angezeigte IP-Adresse in die Adresszeile ihres Browsers ein. Dort können Sie dann die Firmware und Sprachdateien zum Gerät senden. Nach dem Hochladen kann das Update mit der Schaltfläche "Update" am Gerät ausgeführt werden.

Hinweis:

- Die Sprachdateien müssen mit jeder neuen Firmware auch aktualisiert werden. Diese können Sie wie die Firmware Datei über den Browser auf das Gerät übertragen werden.

- Bitte verwenden Sie als Browser Mozilla Firefox oder Google Chrome. Microsoft Edge und Microsoft Internet Explorer werden aktuell nicht unterstützt.

Via SD-Karte

Alternativ ist es auch möglich die neuen Firmware Dateien auf die SD Karte zu speichern. Dazu die Karte aus dem Gerät nehmen (zum Entriegeln auf die Karte drücken). Dann die Dateien am PC auf die Karte speichern. Bitte löschen Sie keine Dateien von der Karte. Nach dem Einsetzen der aktualisierten Karte, greenView neu starten und unmittelbar nach dem Erscheinen des Bootloaders die Schaltfläche "Stay in Bootloader" betätigen. Im Infofenster sehen Sie Informationen zu der Firmware-Datei. Mit der Schaltfläche "Update" wird die Firmware von der SD-Karte auf den Controller programmiert.

10. greenViewDesktop 10.1 Information

Da der VNC-Server wg. Effizienzgründen aus der Software von greenView entfernt wurde, bieten wir ein eigenes Windows Programm zur Visualisierung an. Dieses heißt **greenViewDesktop** und kommuniziert mit greenView über das Modbus TCP/IP Protokoll. Mit diesem Programm können Sie alle Anzeigen von greenView auf Ihrem Rechner darstellen lassen. Es ist also möglich, von einem entfernten Ort (im eigenen Netzwerk oder das Internet) auf greenView zuzugreifen. Den Installer finden Sie zum Download auf der Website "www.ecs-online.org".

10.2 Setup

Voraussetzung ist Windows und die Installation von greenViewDesktop. Dafür führen Sie den greenViewDesktop Installer auf Ihrem PC aus. Des weiteren muss greenView beim Startup über Ethernet mit Ihrem Router verbunden werden. Ist das Verbinden mit dem Router erfolgreich, erhält greenView eine IP-Adresse. Diese können Sie im Logfenster einsehen:

Abbildung 26: Infofenster Im Beispiel ist die IP-Adresse 192.168.1.114

Hinweis:

Im Netzwerk muss ein DHCP-Server vorhanden sein.

10.3 Verbinden

Starten Sie greenViewDesktop.exe. Der Startbildschirm erscheint: Die Sprache können Sie über die Buttons **"DEUTSCH"** oder **"ENGLISH"** auswählen.

Abbildung 27: greenViewDesktop Verbindungsmenü

In dem Feld für die IP-Adresse geben Sie über die Tastatur die aktuelle IP-Adresse Ihres greenViews **ohne führende Nullen** ein und bestätigen Sie mit Enter, oder dem Button **"CONNECT"**. GreenViewDesktop behält sich die IP-Adresse für den nächsten Start, wenn der Verbindungsaufbau erfolgreich ist.

Nach dem Suchlauf erscheint die vertraute Home Ansicht von greenView auf ihrem Computer. Die Bedienung erfolgt mit der Maus und ist äquivalent zur Bedienung am Gerät.

Abbildung 28: greenViewDesktop Ansicht Home

11. Tipps und FAQ

11.1 greenView Standalone Modus

Der "**Standalone Modus**" von greenView wurde neu implementiert. Jetzt lässt sich der Ladezustand eines Batteriesystems ohne LiPros und greenController überwachen.

Ein greenView mit Stromsensoren, kann jetzt ohne weitere Komponenten als sogenannter "Batterie Computer" eingesetzt werden.

Da greenView bei Systemen ohne BMS (z.B. bei Blei Batterie Systemen) und ohne greenController, keine Informationen zur Batteriespannung erhält, wurde der neue "Stand-Alone" Modus hinzugefügt.

In diesem Stand-Alone Modus misst greenView über einen Analogeingang die Batteriespannung des Systems. Da der Eingangsspannungsmessbereich 0-10V beträgt, muss dieser über einen Spannungsteiler nachträglich erweitert werden. Die Platine mit der Sie Spannungen von 0-65V messen können erhalten Sie in unserem Shop. Haben Sie die Platine eingesetzt, müssen Sie im Kalibriermenü den Faktor Spannungsteiler von 10 auf 65 stellen.

In den Einstellungen wurde der Modus "Spannung" und beim Kalibrieren der Faktor "Spannungsteiler" ergänzt.

Zwecks Erfassung der Eingangs- und Ausgangsströme müssen wie zuvor mind. zwei Stromsensoren angeschlossen werden (Ladestrom, Laststrom).

11.2 Modbus TCP/IP Server

GreenView stellt an dem offiziellen Modbus Port 502 einen Modbus Server zur Verfügung. Mit dem Server kann man sich also über die IP-Adresse von greenView und den Port 502 verbinden. Der Server spiegelt die Daten von greenView und aller Modbus Slave Geräte die über die RS485 Master Schnittstelle angebunden sind.

Um die Modbus Register eines an greenView angeschlossenen Geräts lesen zu können, muss dieses über seine Modbus Slave Adresse angesprochen werden. Um greenView selber anzusprechen nutzen Sie die in den Parametern eingestellte Slave Adresse.

11.3 Modbus Slave Schnittstelle

Über die Modbus Slave Schnittstelle lassen sich, wie bei Modbus TCP/IP-Server, die Register aller Slave Geräte über ihre Modbus Slave Adresse auslesen. Die Dokumentation der Daten von greenView finden Sie in dieser Bedienungsanleitung, die der anderen Geräte in der dazugehörigen Bedienungsanleitung.

11.4 Was ist ein intelligenter bzw. dynamischer Zellausgleich?

Mit dem Anschluss von greenView an das LiPro System wird automatisch der intelligente Ladungsausgleich aktiviert. Die Eingestellte Ausgleichsspannung wird dynamisch angepasst. Dadurch kann während der gesamten Lade- und Entladephase ein Zell Ausgleich durchgeführt werden. Dadurch sinkt die Wahrscheinlichkeit, dass die Ladung zum Ausgleich unterbrochen werden muss. Für den intelligenten Ladungsausgleich sucht greenView ständig die Zelle mit dem niedrigsten Ladezustand und sendet an alle LiPros im System eine Ausgleichsspannung die einige mV über dieser Spannung liegt. Dadurch wird die Ladung an allen Zellen mit höherer Spannung gebremst, bzw. gestoppt. Bei Verwendung von aktiven LiPros können durch den Ladungstransfer sogar schwächere Zellen aktiv unterstützt werden. Die aktuell gesendete Spannung können Sie im greenView Tab sehen. Ausgleichsspannungen unter der LVP Stopp Spannung werden aus Sicherheitsgründen nicht gesendet. Die niedrigste Balancerspannung ist die niedrigste LVP Stop Spannung die an einem Lipro eingestellt ist.

11.5 Wie stelle ich die IP-Adresse ein

Aktuell gibt es keine Einstellmöglichkeiten. Die IP – Adresse wird von einem DNS Server bezogen. Falls es in Ihrem Netzwerk keinen DNS Server gibt oder Sie eine manuelle Einstellmöglichkeit zwingend benötigen, wenden Sie sich bitte an ECS. Die vom DNS Server zugewiesene IP-Adresse sehen Sie Log Menü, oder im Bootloader.

11.6 Warum schaltet greenView den greenSwitch aus?

Wir haben neue Sicherheitsfunktionen implementiert. Sollte greenView ein Fehler im System detektieren, so sendet greenView einen Ausschaltbefehl an alle greenSwitch:

- gemessene Zellspannung eines LiPro unter 1,0 V
- Kommunikationsverlust zu einem LiPro
- Summe de gemessenen Zellspannungen weichen von gesamt Batteriespannung (erfasst von greenController, Spannung via 65V Erweiterungs-Platine an Analog Eingängen) um mehr als 5% voneinander ab
- ein LiPro ist auf LVP, aber es fließt weiterhin Laststrom (>0,5A)
- ein LiPro ist im OVP Zustand, aber es fließt Ladestrom (>0,5A)

In allen fällen wird auch das intelligente Balancing gestoppt. Durch dieses System wird eine redundante Zellüberwachung sichergestellt. Eine Fehlfunktion eines LiPro's wird erkannt und das system in einem sicheren Zustand gebracht.

12. Inspektion und Wartung

Für eine optimale und lange Lebensdauer des Gerätes und der Batterien werden die folgenden Inspektionen empfohlen, die zweimal jährlich durchgeführt werden sollten.

- Reinigen Sie das Gerät/Display nur mit einem leicht feuchten Tuch
- Vergewissern Sie sich, dass greenView in einer sauberen und trockenen Umgebung sicher installiert wurde.
- Überprüfen Sie alle freiliegenden Leiter auf eine mögliche Beschädigung ihrer Isolierung, die von Sonneneinstrahlung, Reibung mit anderen Objekten, Trockenfäule, Insekten oder Nagetieren rühren kann. Reparieren Sie die Leiter oder tauschen Sie sie ggf. aus.
- Ziehen Sie die Schrauben aller Klemmen nach.
- Überprüfen Sie, ob die Anzeigen im Einklang mit dem Gerätebetrieb sind, oder ob es eventuell fehlerhafte Anzeigen gibt. Schaffen Sie ggf. Abhilfe.
- Überprüfen Sie, ob die Log Nachrichten im Einklang mit dem Gerätebetrieb sind oder ob es eventuell fehlerhafte Anzeigen gibt. Schaffen Sie ggf. Abhilfe.

13. Gewährleistung

Auf dieses Produkt hat der Kunde 5 Jahre Garantie (ab Rechnungsdatum). Der Verkäufer wird sämtliche Fabrikations- und Materialfehler, die sich am Produkt während der Gewährleistungszeit zeigen und die Funktionsfähigkeit des Produktes beeinträchtigen, beseitigen. Natürliche Abnutzung stellt keinen Fehler dar. Eine Gewährleistung erfolgt nicht, wenn der Fehler von Dritten oder durch nicht fachgerechte Montage oder Inbetriebnahme, fehlerhafte oder nachlässige Behandlung, unsachgemäßen Transport, übermäßige Beanspruchung, ungeeignete Betriebsmittel, mangelhafte Bauarbeiten, ungeeigneten Baugrund, nicht bestimmungsgemäße Verwendung oder nicht sachgerechte Bedienung oder Gebrauch verursacht wurde. Eine Gewährleistung erfolgt nur, wenn der Fehler unverzüglich nach der Entdeckung gerügt wird. Die Reklamation ist an den Verkäufer zu richten.

Vor der Abwicklung eines Gewährleistungsanspruches ist der Verkäufer zu informieren. Zur Abwicklung ist dem Gerät eine genaue Fehlerbeschreibung mit Rechnung / Lieferschein beizufügen. Die Gewährleistung erfolgt nach Wahl des Verkäufers durch Nachbesserung oder Ersatzlieferung. Sind Nachbesserung oder Ersatzlieferung nicht möglich oder erfolgen sie nicht innerhalb angemessener Zeit trotz schriftlicher Nachfristsetzung durch den Kunden, so wird die durch die Fehler bedingte Wertminderung ersetzt oder, sofern das in Anbetracht der Interessen des Endkunden nicht ausreichend ist, der Vertrag gewandelt. Weitergehende Ansprüche gegen den Verkäufer aufgrund dieser Gewährleistungsverpflichtung, insbesondere Schadensersatzansprüche wegen entgangenen Gewinns, Nutzungsentschädigung sowie mittelbarer Schäden, sind ausgeschlossen, soweit gesetzlich nicht zwingend gehaftet wird.

14. Entsorgung

Zur Entsorgung im Sinne der WEEE (Waste electrical and electronic equipment) wenden Sie sich bitte an Ihre örtliche Elektrogeräte-Rücknahmestelle oder senden Sie das Gerät an ECS zurück.

Hinweis:

Dieses Gerät ist RohS konform.

(RohS = Restriction of the use of certain hazards substances in electrical and electronic equipment)

15. Schlussbemerkung

Wir hoffen, dass Sie viel Freude an diesem Produkt haben. Bei Fragen oder Wünschen wenden Sie sich bitte einfach an uns; wir freuen uns über alle Arten von Feedback. Sie benötigen eine kundenspezifische Sonderversion? Kein Problem, fragen Sie uns danach!

16. Anhang A – Modbus Kommunikation

Zur Datenkommunikation ist das standardisierte Modbus RTU Protokoll implementiert. Weitere Informationen zum Modbus Protokoll finden Sie unter <u>www.modbus.org</u>.

RS485

Die Schnittstelle ist ab Werk vorkonfiguriert auf folgende Parameter.

Baudrate	19200
Stoppbits	1
Parity	Even (gerade)
Datenbits	8
Slave Adress	1

 Tabelle 13: Modbus – Konfiguration

Folgende Daten können über die Schnittstelle abgefragt werden:

Modbus Adresse:	Datentyp:	Kennung:	Erlaubter Zugriff:	Erklärung:
				GERÄTEDATEN
0	uint16_t	DEVICE_TYPE	NUR LESEN	GERÄTEKENNUNG (HARDWARE ID) bei greenView 2048
1	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
2	uint32_t	SN1	NUR LESEN	ID/SERIENNUMMER 1 1. WORT
3			NUR LESEN	ID/SERIENNUMMER 1 2. WORT
4	uint32_t	SN2	NUR LESEN	ID/SERIENNUMMER 2 1. WORT
5			NUR LESEN	ID/SERIENNUMMER 2 2. WORT
6	uint32_t	SN3	NUR LESEN	ID/SERIENNUMMER 3

				1. WORT
7			NUR LESEN	ID/SERIENNUMMER 3 2. WORT
8	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
9	uint16_t	FW_REVISION _MAJOR	NUR LESEN	FIRMWARE KENNUNG 1
10	uint16_t	FW_REVISION _MINOR	NUR LESEN	FIRMWARE KENNUNG 2
11	uint16_t	FW_REVISION _REVISION	NUR LESEN	FIRMWARE KENNUNG 3
12	uint32_t	BAUDRATE	NUR LESEN	INFORMATIONEN RS485 SCHNITTSTELLE: BAUDRATE: 1. WORT
13			NUR LESEN	BAUDRATE: 2. WORT STANDART 19200 Zur Zeit keine Änderung möglich
14	uint16_t	PARITY_MODE	NUR LESEN	PARITY MODE STANDART: EVEN Zur Zeit keine Änderung möglich
15	uint16_t	STOP_BIT	NUR LESEN	STOP BIT STANDART: 1 Zur Zeit keine Änderung möglich
16	uint16_t	SLAVE_ADDRESS	LESEN/ SCHREIBEN	GREENVIEW SLAVE ADRESSE STANDARD: 50
17	uint16_t	SAVE_COMMAND	LESEN/ SCHREIBEN	Eine 1 in diesem Register sorgt dafür dass die Parameter aus welche sich in dem Einstellungsmenü ändern lassen gespeichert werden. Nach Abschluss des Speichervorgangs wird das Register wieder auf 0 gesetzt Speichervorgang wird nur ausgeführt wenn REG 158 = 0 ist (SD-Karte muss gemountet sein)
18	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
19	uint8_t + uint8_t	HIGH_BYTE: RESERVIERT LOW_BYTE: BATTERY_SOC _MODE	RESERVIERT LESEN/ SCHREIBEN	BATTERIE SOC MODE: 0: SOC_MODE_VOLTAGE_BASED 1: SOC_MODE_CURRENT_BASED
20	uint64_t	BATTERY	LESEN/	BATTERIE KAPAZITÄT

		_CAPACITY	SCHREIBEN	WORT 1
21			LESEN/ SCHREIBEN	BATTERIE KAPAZITÄT WORT 2
22			LESEN/ SCHREIBEN	BATTERIE KAPAZITÄT WORT 3
23			LESEN/ SCHREIBEN	BATTERIE KAPAZITÄT WORT 4 =: KAPAZITÄT * 1000 * 3600 => Angabe in Milliamperesekunden statt Amperestunden
24	uint16_t	BATTERYCELLS	LESEN/ SCHREIBEN	ANZAHL DER ZELLEN IN REIHE
25	uint16_t	BATTERY _CELLTYPE _NUMBER	LESEN/ SCHREIBEN	ZELLTYPNUMMER AUS LISTE: 0: CELL_TYP_LIFEYPO4 1: CELL_TYP_LIFEPO4 2: CELL_TYP_LIFEMNPO4 3: CELL_TYP_LTO 4: CELL_TYP_LION 5: CELL_TYP_NICD 6: CELL_TYP_NIMH 7: CELL_TYP_PB
26	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
27	uint16_t	MASTER_ERROR	NUR LESEN	GREENVIEW GLOBALE FEHLERANZEIGE
28	uint16_t	BACKLIGHTLEVEL	LESEN/ SCHREIBEN	DISPLAYHELLIGKEIT: zwischen 0 und 100 in %
29	uint16_t	LANGUAGE	LESEN/ SCHREIBEN	SPRACHE: 0: ENGLISCH 1: DEUTSCH
30	uint16_t	ENERGY _SAVEMODE_TIME	LESEN/ SCHREIBEN	ZEIT BIS ZUM AUSSCHALTEN DES DISPLAYS IN SEKUNDEN
31	uint16_t	ENERGY _SAVEMODE _COUNTER	NUR LESEN	ZEIT BIS ENERGIESPARMODUS AKTIVIERT WIRD
32	int32_t	INPUTVOLTAGES[0]	NUR LESEN	SPANNUNG EINGANG 1 WORT 1
33			NUR LESEN	SPANNUNG EINGANG 1 WORT 2
34	int32_t	INPUTVOLTAGES[1]	NUR LESEN	SPANNUNG EINGANG 2 WORT 1
35			NUR LESEN	SPANNUNG EINGANG 2

				WORT 2
36	int32_t	INPUTVOLTAGES[2]	NUR LESEN	SPANNUNG EINGANG 3 WORT 1
37			NUR LESEN	SPANNUNG EINGANG 3 WORT 2
38	int32_t	INPUTVOLTAGES[3]	NUR LESEN	SPANNUNG EINGANG 4 WORT 1
39			NUR LESEN	SPANNUNG EINGANG 4 WORT 2 SPANNUNGEN DER EINGÄNGE ANGEGEBEN IN MILLIVOLT
40	uint32_t	INPUTOFFSET[0]	LESEN/ SCHREIBEN	OFFSET EINGANG 1 WORT1
41			LESEN/ SCHREIBEN	OFFSET EINGANG 1 WORT2
42	uint32_t	INPUTOFFSET1]	LESEN/ SCHREIBEN	OFFSET EINGANG 2 WORT1
43			LESEN/ SCHREIBEN	OFFSET EINGANG 2 WORT2
44	uint32_t	INPUTOFFSET[2]	LESEN/ SCHREIBEN	OFFSET EINGANG 3 WORT1
45			LESEN/ SCHREIBEN	OFFSET EINGANG 3 WORT2
46	uint32_t	INPUTOFFSET[3]	LESEN/ SCHREIBEN	OFFSET EINGANG 4 WORT1
47			LESEN/ SCHREIBEN	OFFSET EINGANG 4 WORT2 OFFSET DER EINGÄNGE IN MILLIVOLT, WERTE GRÖSSER 0
48	uint32_t	INPUTGAIN[0]	LESEN/ SCHREIBEN	GAIN EINGANG 1 WORT 1
49			LESEN/ SCHREIBEN	GAIN EINGANG 1 WORT 2
50	uint32_t	INPUTGAIN[1]	LESEN/ SCHREIBEN	GAIN EINGANG 2 WORT 1
51			LESEN/ SCHREIBEN	GAIN EINGANG 2 WORT 2
52	uint32_t	INPUTGAIN[2]	LESEN/	GAIN EINGANG 3

			SCHREIBEN	WORT 1
53			LESEN/ SCHREIBEN	GAIN EINGANG 3 WORT 2
54	uint32_t	INPUTGAIN[3]	LESEN/ SCHREIBEN	GAIN EINGANG 4 WORT 1
55			LESEN/ SCHREIBEN	GAIN EINGANG 4 WORT 2 BASISWERT GAIN = 2490
56	uint32_t	INPUTVOLTAGE _DIVIDER[0]	LESEN/ SCHREIBEN	SPANNUNGSTEILER EINGANG 1 WORT 1
57			LESEN/ SCHREIBEN	SPANNUNGSTEILER EINGANG 1 WORT 2
58	uint32_t	INPUTVOLTAGE_ DIVIDER[1]	LESEN/ SCHREIBEN	SPANNUNGSTEILER EINGANG 2 WORT 1
59			LESEN/ SCHREIBEN	SPANNUNGSTEILER EINGANG 2 WORT 2
60	uint32_t	INPUTVOLTAGE _DIVIDER[2]	LESEN/ SCHREIBEN	SPANNUNGSTEILER EINGANG 3 WORT 1
61			LESEN/ SCHREIBEN	SPANNUNGSTEILER EINGANG 3 WORT 2
62	uint32_t	INPUTVOLTAGE _DIVIDER[3]	LESEN/ SCHREIBEN	SPANNUNGSTEILER EINGANG 4 WORT 1
63			LESEN/ SCHREIBEN	SPANNUNGSTEILER EINGANG 4 WORT 2 S TANDARTWERT = 10000 ANGABE IN MILLIVOLT Gibt an auf welchen maximalen Ausgangsspannungswert der Spannungsteiler am Eingang ausgelegt ist. Ohne externen Spannungsteiler immer der Wert 10000 => 10V
64	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: INPUT[0].MODE	RESERVIERT LESEN/ SCHREIBEN	EINGANG 1 EINGANGSMODIEN: 0: INPUT_MODE_DISABLED 1: INPUT_MODE_CURRENT_IN _SENSOR_100A 2: INPUT_MODE_CURRENT_IN _SENSOR_200A 3: INPUT_MODE_CURRENT_IN _SENSOR_400 4: INPUT_MODE_CURRENT_IN _SENSOR_600A 5: INPUT_MODE_CURRENT_OUT _SENSOR_100A

				6: INPUT_MODE_CURRENT_OUT _SENSOR_200A 7: INPUT_MODE_CURRENT_OUT _SENSOR_400A 8: INPUT_MODE_CURRENT_OUT _SENSOR_600A 9: INPUT_MODE_ISOMETER_ALARM 10: INPUT_MODE_VOLTAGE
65	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: INPUT[0].INVERTED	RESERVIERT LESEN/ SCHREIBEN	EINGANG 1 MODUS INVERTIERT gilt für digitale Eingangsfunktionen
66	uint16_t	INPUT[0].V_HIGH	NUR LESEN	EINGANG 1 OBERE SCHALTSCHWELLE (IN VOLT)
67	uint16_t	INPUT[0].V_LOW	NUR LESEN	EINGANG 1 UNTERE SCHALTSCHWELLE (IN VOLT)
68 – 73	uint16_t	RESERVIERT	RESERVIERT	
74	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: INPUT[1].MODE	RESERVIERT LESEN/ SCHREIBEN	EINGANG 2 EINGANGSMODIEN: WIE EINGANG 1
75	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: INPUT[1].INVERTED	RESERVIERT LESEN/ SCHREIBEN	EINGANG 2 MODUS INVERTIERT gilt für digitale Eingangsfunktionen
76	uint16_t	INPUT[1].V_HIGH	NUR LESEN	EINGANG 2 OBERE SCHALTSCHWELLE (IN VOLT)
77	uint16_t	INPUT[1].V_LOW	NUR LESEN	EINGANG 2 UNTERE SCHALTSCHWELLE (IN VOLT)
78-83	uint16_t	RESERVIERT	RESERVIERT	
84	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: INPUT[2].MODE	RESERVIERT LESEN/ SCHREIBEN	EINGANG 3 EINGANGSMODIEN: WIE EINGANG 1
85	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: INPUT[2].INVERTED	RESERVIERT LESEN/ SCHREIBEN	EINGANG 3 MODUS INVERTIERT gilt für digitale Eingangsfunktionen
86	uint16_t	INPUT[2].V_HIGH	NUR LESEN	EINGANG 3 OBERE SCHALTSCHWELLE (IN VOLT)
87	uint16_t	INPUT[2].V_LOW	NUR LESEN	EINGANG 3 UNTERE SCHALTSCHWELLE (IN VOLT)

88-93	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
94	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: INPUT[3].MODE	RESERVIERT LESEN/ SCHREIBEN	EINGANG 4 EINGANGSMODIEN: WIE EINGANG 1
95	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: INPUT[3].INVERTED	RESERVIERT LESEN/ SCHREIBEN	EINGANG 4 MODUS INVERTIERT gilt für digitale Eingangsfunktionen
96	uint16_t	INPUT[3].V_HIGH	NUR LESEN	EINGANG 4 OBERE SCHALTSCHWELLE (IN VOLT)
97	uint16_t	INPUT[3].V_LOW	NUR LESEN	EINGANG 4 UNTERE SCHALTSCHWELLE (IN VOLT)
98-103	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
104	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[0].MODE	RESERVIERT LESEN/ SCHREIBEN	AUSGANG 1 AUSGANGSMODIEN: 0: OUTPUT_MODE_DISABLED 1: OUTPUT_MODE_SOC 2: OUTPUT_MODE_LVP 3: OUTPUT_MODE_OVP 4: OUTPUT_MODE_ALARM
105	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[0].INVERT ED	RESERVIERT LESEN/ SCHREIBEN	AUSGANG 1 MODUS INVERTIERT
106				
	uint16_t	OUTPUT[0]HIGH	NUR LESEN	AUSGANG 1 OBERE SCHALTSCHWELLE (IN %)
107	uint16_t uint16_t	OUTPUT[0]HIGH OUTPUT[0]LOW	NUR LESEN	AUSGANG 1 OBERE SCHALTSCHWELLE (IN %) AUSGANG 1 UNTERE SCHALTSCHWELLE (IN %)
107 108-113	uint16_t uint16_t uint16_t	OUTPUT[0]HIGH OUTPUT[0]LOW RESERVIERT	NUR LESEN NUR LESEN RESERVIERT	AUSGANG 1 OBERE SCHALTSCHWELLE (IN %) AUSGANG 1 UNTERE SCHALTSCHWELLE (IN %)
107 108-113 114	uint16_t uint16_t uint16_t uint8_t + uint8_t	OUTPUT[0]HIGH OUTPUT[0]LOW RESERVIERT HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[1].MODE	NUR LESEN NUR LESEN RESERVIERT RESERVIERT LESEN/ SCHREIBEN	AUSGANG 1 OBERE SCHALTSCHWELLE (IN %) AUSGANG 1 UNTERE SCHALTSCHWELLE (IN %) AUSGANG 2 AUSGANGSMODIEN: WIE AUSGANG 1
107 108-113 114 115	<pre>uint16_t uint16_t uint16_t uint8_t+ uint8_t uint8_t+ uint8_t</pre>	OUTPUT[0]HIGH OUTPUT[0]LOW RESERVIERT HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[1].MODE HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[1].INVERT ED	NUR LESEN NUR LESEN RESERVIERT RESERVIERT LESEN/ SCHREIBEN SCHREIBEN	AUSGANG 1 OBERE SCHALTSCHWELLE (IN %) AUSGANG 1 UNTERE SCHALTSCHWELLE (IN %) AUSGANG 2 AUSGANG 2 AUSGANG 2 MODUS INVERTIERT

117	uint16_t	OUTPUT[1]LOW	NUR LESEN	AUSGANG 2 UNTERE SCHALTSCHWELLE (IN %)
118-123	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
124	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[2].MODE	RESERVIERT LESEN/ SCHREIBEN	AUSGANG 3 AUSGANGSMODIEN: WIE AUSGANG 1
125	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[2].INVERT ED	RESERVIERT LESEN/ SCHREIBEN	AUSGANG 3 MODUS INVERTIERT
126	uint16_t	OUTPUT[2]HIGH	NUR LESEN	AUSGANG 3 OBERE SCHALTSCHWELLE (IN %)
127	uint16_t	OUTPUT[2]LOW	NUR LESEN	AUSGANG 3 UNTERE SCHALTSCHWELLE (IN %)
128-133	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
134	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[3].MODE	RESERVIERT LESEN/ SCHREIBEN	AUSGANG 4 AUSGANGSMODIEN: WIE AUSGANG 1
135	uint8_t + uint8_t	HIGH BYTE: RESERVIERT LOW_BYTE: OUTPUT[3].INVERT ED	RESERVIERT LESEN/ SCHREIBEN	AUSGANG 4 MODUS INVERTIERT
136	uint16_t	OUTPUT[3]HIGH	NUR LESEN	AUSGANG 4 OBERE SCHALTSCHWELLE (IN %)
137	uint16_t	OUTPUT[3]LOW	NUR LESEN	AUSGANG 4 UNTERE SCHALTSCHWELLE (IN %)
138-143	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
144	uint8_t + uint8_t	HIGH_BYTE: MINUTES LOW_BYTE: HOURS	LESEN/ SCHREIBEN LESEN/ SCHREIBEN	SYSTEMZEIT: MINUTEN SYSTEMZEIT: STUNDEN
145	uint8_t + uint8_t	HIGH_BYTE RESERVIERT LOW_BYTE SECONDS	RESERVIERT LESEN/ SCHREIBEN	SYSTEMZEIT: SEKUNDEN
146-153	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
154	uint8_t +	HIGH_BYTE:	LESEN/	SYSTEMDATUM: MONAT

	uint8_t	MONTH LOW_BYTE: WEEKDAY	SCHREIBEN LESEN/ SCHREIBEN	SYSTEMDATUM: WOCHENTAG
155	uint8_t + uint8_t	HIGH_BYTE: YEAR LOW_BYTE: DATE	LESEN/ SCHREIBEN LESEN/ SCHREIBEN	SYSTEMDATUM: JAHR SYSTEMDATUM: TAG
156	uint32_t	NUMBER _OF_DEVICES _IN_SYSTEM	NUR LESEN	ANZAHL DER SLAVE GERÄTE AN DER RS485 MASTER SCHNITTSTELLE + INTERNE GERÄTE (7) WORT1
157			NUR LESEN	ANZAHL DER SLAVE GERÄTE AN DER RS485 MASTER SCHNITTSTELLE + INTERNE GERÄTE (7) WORT2
158	uint16_t	SD_CARD _MOUNTED	NUR LESEN	OB DIE SD_KARTE GEMOUNTET IST 0: JA 1: NEIN
159	uint8_t + uint8_t	LOW_BYTE: IP_ADRESSE[0] HIGH_BYTE: IP_ADRESSE[1]	NUR LESEN	DIE VON DHCP SERVER ERHALTENE IP-ADRESSE BYTE 1 + 2
160	uint8_t + uint8_t	LOW_BYTE: IP_ADRESSE[2] HIGH_BYTE: IP_ADRESSE[3]	NUR LESEN	DIE VON DHCP SERVER ERHALTENE IP-ADRESSE BYTE 3 + 4
161	uint16_t	ETHERNET _POWERSAVE _MODE	LESEN/ SCHREIBEN	EINE 1 IN DIESEM REGISTER + SPEICHERN AUF DER SD-KARTE (REG 17 SAVE_COMMAND) + GERÄTENEUSTART SCHALTET ZWECKS STROMSPAREN DIE ETHERNETSCHNITTSTELLE AB. WIRD NACH DEM NEUSTART EINE 1 GELESEN IST DER STROMSPARMODUS EINGESCHALTET
162-499	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
				ZELLPARAMETER:
500-525				1. ZELLTYP:
500		HIGHI_BYTE: RESERVIERT LOW_BYTE: CELL_TYPE	LESEN LESEN	MÖGLICHE ZELLTYPEN: 0: CELL_TYP_PB // Blei 1: CELL_TYP_NICD // Nickel-Cadmium 2: CELL_TYP_NIMH // Nickel-Metallhydrid 3: CELL_TYP_LIFEYPO4

				 // Litium-Eisen-Ytrium-Phosphast 4: CELL_TYP_LIFEPO4 // Litium-Eisen-Phosphast 5: CELL_TYP_LIFEMNPO4 // Litium-Eisen-Mangan-Phosphast 6: CELL_TYP_LTO // Litium-Titanat 7: CELL_TYP_LIION // Litium-Ionen
501	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
502	uint32_t	UCHARGE	LESEN/ SCHREIBEN	LADESPANNUNG ZELLE VOLL IN MILLIVOLT WORT 1
503			LESEN/ SCHREIBEN	LADESPANNUNG ZELLE VOLL IN MILLIVOLT WORT 2
504	uint32_t	UDISCHARGE	LESEN/ SCHREIBEN	LADESPANNUNG ZELLE LEER IN MILLIVOLT WORT 1
505			LESEN/ SCHREIBEN	LADESPANNUNG ZELLE LEER IN MILLIVOLT WORT 2
506	uint32_t	ITAIL	LESEN/ SCHREIBEN	STROM ZELLE GELADEN IN % WORT 1
507			LESEN/ SCHREIBEN	STROM ZELLE GELADEN IN % WORT 2
508		TCHARGE _DETECTION	LESEN/ SCHREIBEN	ZEIT BIS ZELLE VOLL ERKANNT IN MINUTEN WORT 1
509			LESEN/ SCHREIBEN	ZEIT BIS ZELLE VOLL ERKANNT IN MINUTEN WORT 2
510	uint32_t	PEUKERT _EXPONENT	LESEN/ SCHREIBEN	PEUKERT EXPONENT ^(x/100) WORT 1
511			LESEN/ SCHREIBEN	PEUKERT EXPONENT ^(x/100) WORT 2
512	uint32_t	CEF	LESEN/ SCHREIBEN	LADEEFEKTIVITÄTSFAKTOR IN % WORT 1
513			LESEN/ SCHREIBEN	LADEEFEKTIVITÄTSFAKTOR IN % WORT 2

514	uint32_t	LVP_START	LESEN/ SCHREIBEN	UNTERSPANNUNGSSCHUTZ START IN MILLIVOLT WORT 1
515			LESEN/ SCHREIBEN	UNTERSPANNUNGSSCHUTZ START IN MILLIVOLT WORT 2
516	uint32_t	LVP_STOP	LESEN/ SCHREIBEN	UNTERSPANNUNGSSCHUTZ STOP IN MILLIVOLT WORT 1
517			LESEN/ SCHREIBEN	UNTERSPANNUNGSSCHUTZ STOP IN MILLIVOLT WORT 2
518	uint32_t	OVP_START	LESEN/ SCHREIBEN	ÜBERSPANNUNGSSCHUTZ START IN MILLIVOLT WORT 1
519			LESEN/ SCHREIBEN	ÜBERSPANNUNGSSCHUTZ START IN MILLIVOLT WORT 2
520	uint32_t	OVP_STOP	LESEN/ SCHREIBEN	ÜBERSPANNUNGSSCHUTZ STOP IN MILLIVOLT WORT 1
521			LESEN/ SCHREIBEN	ÜBERSPANNUNGSSCHUTZ STOP IN MILLIVOLT WORT 2
522	uint32_t	LVP_ALARM	LESEN/ SCHREIBEN	UNTERSPANNUNG ALARM IN MILLIVOLT WORT 1
523			LESEN/ SCHREIBEN	UNTERSPANNUNG ALARM IN MILLIVOLT WORT 2
524	uint32_t	OVP_ALARM	LESEN/ SCHREIBEN	ÜBERSPANNUNG ALARM IN MILLIVOLT WORT 1
525			LESEN/ SCHREIBEN	ÜBERSPANNUNG ALARM IN MILLIVOLT WORT 2
526-551				2. ZELLTYP: SIEHE REGISTERBESCHREIBUNG ZELLTYP 1 VON MODBUS REGISTER 500 BIS MODBUS REGISTER 525
552-577				3. ZELLTYP:

				SIEHE REGISTERBESCHREIBUNG ZELLTYP 1 VON MODBUS REGISTER 500 BIS MODBUS REGISTER 525
578-603				4. ZELLTYP: SIEHE REGISTERBESCHREIBUNG ZELLTYP 1 VON MODBUS REGISTER 500 BIS MODBUS REGISTER 525
604-629				5. ZELLTYP: SIEHE REGISTERBESCHREIBUNG ZELLTYP 1 VON MODBUS REGISTER 500 BIS MODBUS REGISTER 525
630-655				6. ZELLTYP: SIEHE REGISTERBESCHREIBUNG ZELLTYP 1 VON MODBUS REGISTER 500 BIS MODBUS REGISTER 525
656-681				7. ZELLTYP: SIEHE REGISTERBESCHREIBUNG ZELLTYP 1 VON MODBUS REGISTER 500 BIS MODBUS REGISTER 525
582-707				8. ZELLTYP: SIEHE REGISTERBESCHREIBUNG ZELLTYP 1 VON MODBUS REGISTER 500 BIS MODBUS REGISTER 525
708-999	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
				ANSICHT GVIEW
1000- 1019	uint16_t	RESERVIERT	RESERVIERT	
1020	int32_t	ANALOGIN[0]	NUR LESEN	ANZEIGE GVIEW EINGANGSSPANNUNG EINGANG 1, WORT 1
1021			NUR LESEN	ANZEIGE GVIEW EINGANGSSPANNUNG EINGANG 1, WORT 2
1022	int32_t	ANALOGIN[1]	NUR LESEN	ANZEIGE GVIEW EINGANGSSPANNUNG EINGANG 2, WORT 1

1023			NUR LESEN	ANZEIGE GVIEW EINGANGSSPANNUNG EINGANG 2, WORT 2
1024	int32_t	ANALOGIN[2]	NUR LESEN	ANZEIGE GVIEW EINGANGSSPANNUNG EINGANG 3, WORT 1
1025			NUR LESEN	ANZEIGE GVIEW EINGANGSSPANNUNG EINGANG 3, WORT 2
1026	int32_t	ANALOGIN[3]	NUR LESEN	ANZEIGE GVIEW EINGANGSSPANNUNG EINGANG 4, WORT 1
1027			NUR LESEN	ANZEIGE GVIEW EINGANGSSPANNUNG EINGANG 4, WORT 2
1028	int16_t	DIGITALOUT[0]	NUR LESEN	ANZEIGE GVIEW ZUSTAND AUSGANG 1
1029	int16_t	DIGITALOUT[0]	NUR LESEN	ANZEIGE GVIEW ZUSTAND AUSGANG 1
1030	int16_t	DIGITALOUT[0]	NUR LESEN	ANZEIGE GVIEW ZUSTAND AUSGANG 1
1031	int16_t	DIGITALOUT[0]	NUR LESEN	ANZEIGE GVIEW ZUSTAND AUSGANG 1
1032	uint32_t	GREENVIEW _BMS_MIN	NUR LESEN	MINIMALER SPANNUNGSWERT D. ZELLEN IN MILLIVOLT WORT 1
1033			NUR LESEN	MINIMALER SPANNUNGSWERT D. ZELLEN IN MILLIVOLT WORT 2
1034	uint32_t	GREENVIEW_BMS_ MAX	NUR LESEN	MAXIMALER SPANNUNGSWERT D. ZELLEN IN MILLIVOLT WORT 1
1035			NUR LESEN	MAXIMALER SPANNUNGSWERT D. ZELLEN IN MILLIVOLT WORT 2
1036	uint32_t	GREENVIEW _BMS_DIV	NUR LESEN	DIFFERENZ MIN/MAX SPANNUNG D. ZELLEN IN MILLIVOLT WORT 1
1037			NUR LESEN	DIFFERENZ MIN/MAX SPANNUNG D. ZELLEN IN MILLIVOLT WORT 2

1038	uint32_t	GREENVIEW _BMS_BAL	NUR LESEN	BALANCING SPANNUNG IN MILLIVOLT (AKTIVES BALANCING) WORT 1
1039			NUR LESEN	BALANCING SPANNUNG IN MILLIVOLT (AKTIVES BALANCING) WORT 2
1040	uint32_t	GREENVIEW _BMS_REAL	NUR LESEN	GREENVIEW_BMS_BAL = GREENVIEW_BMS_REAL + BALANCER_OFFSET_VOLTAGE BALANCER_OFFSET_VOLTAGE = 20mV WORT 1
1041			NUR LESEN	GREENVIEW_BMS_BAL = GREENVIEW_BMS_REAL + BALANCER_OFFSET_VOLTAGE BALANCER_OFFSET_VOLTAGE = 20mV WORT 2
1042- 1999	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
				ANSICHT HOME
2000- 2019	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
2020	uint32_t	P_IN	NUR LESEN	LADELEISTUNG DES SYSTEMS WORT 1
2020 2021	uint32_t	P_IN	NUR LESEN	LADELEISTUNG DES SYSTEMS WORT 1 LADELEISTUNG DES SYSTEMS WORT 2
2020 2021 2022	uint32_t uint32_t	P_IN P_IN_MAX	NUR LESEN NUR LESEN NUR LESEN	LADELEISTUNG DES SYSTEMS WORT 1 LADELEISTUNG DES SYSTEMS WORT 2 MAXIMALE LADELEISTUNG DES SYSTEMS WORT 1
2020 2021 2022 2023	uint32_t uint32_t	P_IN P_IN_MAX	NUR LESEN NUR LESEN NUR LESEN	LADELEISTUNG DES SYSTEMS WORT 1 LADELEISTUNG DES SYSTEMS WORT 2 MAXIMALE LADELEISTUNG DES SYSTEMS WORT 1 MAXIMALE LADELEISTUNG DES SYSTEMS WORT 2
2020 2021 2022 2023 2024	uint32_t uint32_t uint32_t	P_IN P_IN_MAX P_IN_WARN_MAX	NUR LESEN NUR LESEN NUR LESEN NUR LESEN	LADELEISTUNG DES SYSTEMS WORT 1 LADELEISTUNG DES SYSTEMS WORT 2 MAXIMALE LADELEISTUNG DES SYSTEMS WORT 1 MAXIMALE LADELEISTUNG DES SYSTEMS WORT 2 LADELEISTUNG AB DER SICH DIE FARBE DER ANZEIGE ZUR WARNFARBE (grün→ gelb) HIN ÄNDERT WORT 1
2020 2021 2022 2023 2024 2024	uint32_t uint32_t uint32_t	P_IN P_IN_MAX P_IN_WARN_MAX	NUR LESEN NUR LESEN NUR LESEN NUR LESEN NUR LESEN	LADELEISTUNG DES SYSTEMS WORT 1 LADELEISTUNG DES SYSTEMS WORT 2 MAXIMALE LADELEISTUNG DES SYSTEMS WORT 1 MAXIMALE LADELEISTUNG DES SYSTEMS WORT 2 LADELEISTUNG AB DER SICH DIE FARBE DER ANZEIGE ZUR WARNFARBE (grün→ gelb) HIN ÄNDERT WORT 1 LADELEISTUNG AB DER SICH DIE FARBE DER ANZEIGE ZUR WARNFARBE (grün→ gelb) HIN ÄNDERT WORT 2

				WORT 1
2027			NUR LESEN	LADELEISTUNG AB DER SICH DIE FARBE DER ANZEIGE ZUR ALARM (gelb→ rot) HIN ÄNDERT WORT 2
2028	uint32_t	P_OUT	NUR LESEN	LASTLEISTUNG DES SYSTEMS WORT 1
2029			NUR LESEN	LASTLEISTUNG DES SYSTEMS WORT 2
2030	uint32_t	P_OUT_MAX	NUR LESEN	MAXIMALE LASTLEISTUNG DES SYSTEMS WORT 1
2031			NUR LESEN	MAXIMALE LASTLEISTUNG DES SYSTEMS WORT 2
2032	uint32_t	P_OUT _WARN_MAX	NUR LESEN	LASTLEISTUNG AB DER SICH DIE FARBE DER ANZEIGE ZUR WARNFARBE (grün→ gelb) HIN ÄNDERT WORT 1
2033			NUR LESEN	LASTLEISTUNG AB DER SICH DIE FARBE DER ANZEIGE ZUR WARNFARBE (grün→ gelb) HIN ÄNDERT WORT 2
2034	uint32_t	P_OUT _ALERT_MAX	NUR LESEN	LASTLEISTUNG AB DER SICH DIE FARBE DER ANZEIGE ZUR ALARM (gelb→ rot) HIN ÄNDERT WORT 1
2035			NUR LESEN	LASTLEISTUNG AB DER SICH DIE FARBE DER ANZEIGE ZUR ALARM (gelb→ rot) HIN ÄNDERT WORT 2
2036	uint32_t	SOC	NUR LESEN	LADEZUSTAND DES SYSTEMS WORT 1
2037			NUR LESEN	LADEZUSTAND DES SYSTEMS WORT 2
2038	uint32_t	SOC_WARN_MIN	NUR LESEN	LADEZUSTAND AB DER SICH DIE FARBE DER ANZEIGE ZUR WARNFARBE (grün→ gelb) HIN ÄNDERT WORT 1
2039			NUR LESEN	LADEZUSTAND AB DER SICH DIE FARBE DER ANZEIGE ZUR WARNFARBE (grün→ gelb) HIN ÄNDERT

				WORT 2
2040	uint32_t	SOC_ALERT_MIN	NUR LESEN	LADEZUSTAND AB DER SICH DIE FARBE DER ANZEIGE ZUR ALARM (gelb→ rot) HIN ÄNDERT WORT 1
2041			NUR LESEN	LADEZUSTAND AB DER SICH DIE FARBE DER ANZEIGE ZUR ALARM (gelb→ rot) HIN ÄNDERT WORT 2
2042	uint32_t	U_BATT	NUR LESEN	BATTERIESPANNUNG DES SYSTEMS WORT 1
2043			NUR LESEN	BATTERIESPANNUNG DES SYSTEMS WORT 2
2044	int32_t	I_BATT	NUR LESEN	BATTERIESTROM = LADESTROM - LASTSTROM WORT 1
2045			NUR LESEN	BATTERIESTROM = LADESTROM - LASTSTROM WORT 2
2046	uint32_t	I_IN	NUR LESEN	LADESTROM WORT 1
2047			NUR LESEN	LADESTROM WORT 2
2048	uint32_t	I_OUT	NUR LESEN	LASTSTROM WORT 1
2049			NUR LESEN	LASTSTROM WORT 2
2050	int32_t	AH_CNT_DISPLAY	NUR LESEN	APERESTUNDENZÄHLER FÜR DISPLAYANZEIGE WORT 1
2051			NUR LESEN	APERESTUNDENZÄHLER FÜR DISPLAYANZEIGE WORT 2
2052	int64_t	AH_CNT	NUR LESEN	APERESTUNDENZÄHLER SYSTEM WORT 1
2053			NUR LESEN	APERESTUNDENZÄHLER SYSTEM WORT 2
2054			NUR LESEN	APERESTUNDENZÄHLER SYSTEM WORT 3
2055			NUR LESEN	APERESTUNDENZÄHLER SYSTEM

E C

				WORT 4
2056- 2999	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
				ANSICHT LOG
3000- 3019	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
3020- 3999	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
				ANSICHT STROMSENSOR 1
4000- 4019	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
4020	int32_t	Ι	NUR LESEN	EINGANGSSTROM EINGANG 1 IN MILLIAMPERE WORT 1
4021			NUR LESEN	EINGANGSSTROM EINGANG 1 IN MILLIAMPERE WORT 2
4022	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
4023	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
4024	int32_t	I_MAX	NUR LESEN	MAXIMALER EINGANGSTROM IN MILLIAMPERE WORT 1
4025			NUR LESEN	MAXIMALER EINGANGSTROM IN MILLIAMPERE WORT 2
4026	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
4027	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
4028	int32_t	I_WARN_MAX	NUR LESEN	WARNWERT: ANZEIGE ÄNDERT FARBE (grün→ gelb) BEI CA. 90% I_MAX WORT 1
4029			NUR LESEN	WARNWERT: ANZEIGE ÄNDERT FARBE (grün→ gelb) BEI CA. 90% I_MAX WORT 2
4030	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
4031	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
4032	int32_t	I_ALERT_MAX	NUR LESEN	ALARMWERT: ANZEIGE ÄNDERT FARBE (gelb→ rot) BEI CA. 95% I_MAX

_

				WORT 1
4033			NUR LESEN	ALARMWERT: ANZEIGE ÄNDERT FARBE (gelb→ rot) BEI CA. 95% I_MAX WORT 2
4034- 4999	uint16_t	RESERVIERT	RESERVIERT	RESERVIERT
				ANSICHT STROMSENSOR 2
5000- 5999				MODBUS REGISTERBESCHREIBUNG WIE BEI ANSICHT STROMSENSOR 1
				ANSICHT STROMSENSOR 3
6000- 6999				MODBUS REGISTERBESCHREIBUNG WIE BEI ANSICHT STROMSENSOR 1
				ANSICHT STROMSENSOR 4
7000- 7999				MODBUS REGISTERBESCHREIBUNG WIE BEI ANSICHT STROMSENSOR 1

Tabelle 14: Modbus – Schnittstellenparameter

17. Anhang B – Änderungsliste

1.00.00

• Initial Version

1.00.01

• Hinweis zu Tight VNC hinzugefügt

1.02.00

- Umfassende Softwareaktualisierung
- VNC Server entfernt
- Modbus TCP/IP Server hinzugefügt
- greenViewDesktop
- greenView Standalone Modus
- Eingangsfunktionen Spannung und Isometer Alarm
- Dokumentation greenView Modbus Register

1.02.01

• Modbus Register greenView Eingangsspannungen von 16 auf 32 Bit wegen FW Änderung

1.03.00

- Eingangsmodus Füllstand und die Ausgangsmodien Füllstand 1 bis 4 dokumentiert.
- Bootloarder: Hinweis Sprachdateien hinzugefügt.

1.04.00

- Neuer 50A Sensor hinzugefügt
- Grafische Anzeige von Tankfüllständen (FSensor) hinzugefügt

1.05.00

• Info's zum neuen erweiterten LiPro Menü hinzugefügt

© 2019 Alle Rechte vorbehalten

Vielen Dank, dass Sie sich für ein Qualitätsprodukt von ECS entschieden haben. Wir freuen uns, Ihnen ein Produkt liefern zu können, dass ein sicheres Betriebsverhalten mit größtmöglicher Anwenderfreundlichkeit kombiniert.

Dieses Produkt ist nicht für den Export in die USA oder Kanada bestimmt!